Thermal stability of MnO2 polymorphs

被引:42
|
作者
Hatakeyama, Takuya [1 ,2 ]
Okamoto, Norihiko L. [1 ]
Ichitsubo, Tetsu [1 ]
机构
[1] Tohoku Univ, Inst Mat Res, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Grad Sch Engn, Aoba Ku, 6-6-01 Aoba, Sendai, Miyagi 9808579, Japan
关键词
Manganese dioxides; Polymorphic crystal structure; Thermal stability; Phase transformation; In-situ high temperature X-ray diffraction; HIGH-TEMPERATURE DECOMPOSITION; MANGANESE-DIOXIDE; ALPHA-MNO2; MORPHOLOGY; ELECTRODE; BEHAVIOR; CRYSTAL; KMNO4;
D O I
10.1016/j.jssc.2021.122683
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
This study reports thermal stability of alpha, beta, gamma, delta, and lambda-type MnO2 polymorphs investigated using differential scanning calorimetry (DSC) and in-situ high-temperature X-ray diffraction measurement (HTXRD). These experiments revealed that the thermal stability of the polymorphs is in the following order: beta > alpha > gamma > delta approximate to lambda. The beta-MnO2 phase (1 x 1 tunnel, rutile structure), the most stable form between the MnO2 polymorphs, maintains the structure up to 500 degrees C until oxygen release causes phase transformation to Mn2O3. The alpha-MnO2 phase (2 x 2 and 1 x 1 tunnel structure) exhibits high thermal stability comparable to the beta phase, despite its large vacant 2 x 2 tunnel. The gamma-MnO2 phase (mixed microdomain structure of 2 x 1 tunnel and 1 x 1 tunnel) shows a stepwise transformation into beta-MnO2 from 400 degrees C after structure relaxation. The delta-MnO2 phase (layered structure) is easily destabilized by extracting interlayer K ions, resultingly, to lose the interlayer periodicity below 200 degrees C, while each layer itself is preserved up to similar to 500 degrees C. The lambda-MnO2 phase (defect spinel structure) is thermally unstable and transforms into beta-MnO2 around 250 degrees C, and subsequently decomposes to Mn2O3 above the temperature. The thermal stability of MnO2 polymorphs is discussed in terms of the bonding environment of oxide ions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Structural stability of MnO2 polymorphs and their reactivity vs. lithium
    Kucza, W
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (09) : 669 - 673
  • [2] Interatomic potentials for simulating MnO2 polymorphs
    Fleming, SD
    Morton, JR
    Rohl, AL
    Ward, CB
    [J]. MOLECULAR SIMULATION, 2005, 31 (01) : 25 - 32
  • [3] Energetics of MnO2 polymorphs in density functional theory
    Kitchaev, Daniil A.
    Peng, Haowei
    Liu, Yun
    Sun, Jianwei
    Perdew, John P.
    Ceder, Gerbrand
    [J]. PHYSICAL REVIEW B, 2016, 93 (04)
  • [4] SYNTHESIS OF MN SPINELS FROM DIFFERENT POLYMORPHS OF MNO2
    PISTOIA, G
    ANTONINI, A
    ZANE, D
    PASQUALI, M
    [J]. JOURNAL OF POWER SOURCES, 1995, 56 (01) : 37 - 43
  • [5] Enhanced thermal stability and dielectric performance of δ-MnO2 by Ni2+ doping
    Lulu Song
    Yuping Duan
    Gaihua He
    Xuefeng Zhang
    [J]. Journal of Materials Science: Materials in Electronics, 2019, 30 : 15362 - 15370
  • [6] Formation Mechanisms of Nanocrystalline MnO2 Polymorphs under Hydrothermal Conditions
    Birgisson, Steinar
    Saha, Dipankar
    Iversen, Bo B.
    [J]. CRYSTAL GROWTH & DESIGN, 2018, 18 (02) : 827 - 838
  • [7] Quantitatively Predict the Potential of MnO2 Polymorphs as Magnesium Battery Cathodes
    Ling, Chen
    Zhang, Ruigang
    Mizuno, Fuminori
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (07) : 4508 - 4515
  • [8] Enhanced thermal stability and dielectric performance of δ-MnO2 by Ni2+ doping
    Song, Lulu
    Duan, Yuping
    He, Gaihua
    Zhang, Xuefeng
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (16) : 15362 - 15370
  • [9] Structure and Stability of Hydrated β-MnO2 Surfaces
    Oxford, Gloria A. E.
    Chaka, Anne M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (21): : 11589 - 11605
  • [10] Stability of λ-MnO2 in various aqueous electrolytes
    Sun, Weiwei
    Xia, Xi
    [J]. 1600, Hunan Light Industry Research Institute, China (30):