A basis for the Kauffman skein module of the product of a surface and a circle

被引:1
|
作者
Detcherry, Renaud [1 ]
Wolff, Maxime
机构
[1] Max Planck Inst Math, Bonn, Germany
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2021年 / 21卷 / 06期
关键词
GENERATORS;
D O I
10.2140/agt.2021.21.2959
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Kauffman bracket skein module S(M) of a 3-manifold M is a Q(A)-vector space spanned by links in M modulo the so-called Kauffman relations. For any closed oriented surface Sigma we provide an explicit spanning family for the skein modules S(Sigma x S-1). Combined with earlier work of Gilmer and Masbaum (Proc. Amer. Math. Soc. 147 (2019) 4091-4106), we answer their question about the dimension of S(Sigma x S-1) being 2(2g+1) + 2g-1.
引用
收藏
页码:2959 / 2993
页数:35
相关论文
共 50 条