Variational Bayesian Super Resolution Acceleration Using Preconditioned Conjugate Gradient

被引:0
|
作者
Chen, Jingyu [1 ]
Wang, Yigang [1 ]
Li, Shi [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Media & Design, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Variational Bayesian SR; Preconditioned Conjugate Gradient; Jacobi preconditioner; ICCG preconditioner;
D O I
10.1117/12.2502870
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The high computational complex of Super Resolution (SR) is a focused topic in many imaging applications, which involves to solve huge sparse linear systems. Solving such systems usually employs the iterative methods, such as Conjugate Gradient (CG). But in most variational Bayesian SR algorithms, CG method converges slowly with the coefficient matrix being ill-conditioned and takes long execution time. In this paper, we propose Preconditioned Conjugate Gradient (PCG) to solve the problem and analyze the performance of the different PCG solvers, Jacobi and incomplete Cholesky decomposition(IC). Experimental results demonstrate that the new method achieves accelerations compared with the traditional one while maintaining high visual quality of the reconstructed HR image, and, especially, the IC solver has a better performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Variational Bayesian Image Super-Resolution with GPU Acceleration
    Chantas, Giannis
    [J]. ARTIFICIAL NEURAL NETWORKS-ICANN 2010, PT I, 2010, 6352 : 480 - 489
  • [2] USCT imaging acceleration using preconditioned conjugate gradient and multigrid methods
    Wang, H.
    Gemmeke, H.
    Hopp, T.
    Hesser, J.
    [J]. STRAHLENTHERAPIE UND ONKOLOGIE, 2018, 194 : S153 - S154
  • [3] Variational Bayesian Super Resolution
    Babacan, S. Derin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (04) : 984 - 999
  • [4] Preconditioned Conjugate Gradient Acceleration on FPGA-Based Platforms
    Malakonakis, Pavlos
    Isotton, Giovanni
    Miliadis, Panagiotis
    Alverti, Chloe
    Theodoropoulos, Dimitris
    Pnevmatikatos, Dionisios
    Ioannou, Aggelos
    Harteros, Konstantinos
    Georgopoulos, Konstantinos
    Papaefstathiou, Ioannis
    Mavroidis, Iakovos
    [J]. ELECTRONICS, 2022, 11 (19)
  • [5] Superresolution using preconditioned conjugate gradient method
    Yang, CJ
    Duraiswami, R
    Davis, L
    [J]. SECOND INTERNATION CONFERENCE ON IMAGE AND GRAPHICS, PTS 1 AND 2, 2002, 4875 : 591 - 598
  • [6] An observation-space formulation of variational assimilation using a restricted preconditioned conjugate gradient algorithm
    Gratton, Serge
    Tshimanga, Jean
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (643) : 1573 - 1585
  • [7] Linearly preconditioned nonlinear conjugate gradient acceleration of the PX-EM algorithm
    Zhou, Lin
    Tang, Yayong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 155
  • [8] Stochastic optimization using the stochastic preconditioned conjugate gradient method
    Oakley, DR
    Sues, RH
    [J]. AIAA JOURNAL, 1996, 34 (09) : 1969 - 1971
  • [9] SAOR preconditioned conjugate gradient method
    Wang, Jianguo
    Meng, Guoyan
    [J]. IITA 2007: WORKSHOP ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, PROCEEDINGS, 2007, : 331 - 334
  • [10] AOR Preconditioned Conjugate Gradient Method
    Wang, Jianguo
    Zhao, Qingshan
    [J]. ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 258 - 261