Curvelet-based seismic data processing: A multiscale and nonlinear approach

被引:143
|
作者
Herrmann, Felix J. [1 ]
Wang, Deli [2 ]
Hennenfent, Gilles [1 ]
Moghaddam, Peyman P. [1 ]
机构
[1] Univ British Columbia, Seism Lab Imaging & Modeling, Dept Earth & Ocean Sci, Vancouver, BC V5Z 1M9, Canada
[2] Jilin Univ, Coll Geoexplorat Sci & Technol, Changchun 130023, Peoples R China
关键词
D O I
10.1190/1.2799517
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Mitigating missing data, multiples, and erroneous migration amplitudes are key factors that determine image quality. Curvelets, little "plane waves," complete with oscillations in one direction and smoothness in the other directions, sparsify a property we leverage explicitly with sparsity promotion. With this principle, we recover seismic data with high fidelity from a small subset (20%) of randomly selected traces. Similarly, sparsity leads to a natural decorrelation and hence to a robust curvelet-domain primary-multiple separation for North Sea data. Finally, sparsity helps to recover migration amplitudes from noisy data. With these examples, we show that exploiting the curvelet's ability to sparsify wavefrontlike features is powerful, and our results are a clear indication of the broad applicability of this transform to exploration seismology.
引用
收藏
页码:A1 / A5
页数:5
相关论文
共 50 条
  • [1] Curvelet-based seismoelectric data processing
    Warden, S.
    Garambois, S.
    Sailhac, P.
    Jouniaux, L.
    Bano, M.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 190 (03) : 1533 - 1550
  • [2] Curvelet-based Noise Attenuation in Prestack Seismic Data
    Wang, Linfei
    Liu, Huaishan
    Tong, Siyou
    Zhang, Jin
    Wu, Zhiqiang
    [J]. 2008 INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND TRAINING AND 2008 INTERNATIONAL WORKSHOP ON GEOSCIENCE AND REMOTE SENSING, VOL 2, PROCEEDINGS,, 2009, : 61 - +
  • [3] A CURVELET-BASED DISTANCE MEASURE FOR SEISMIC IMAGES
    Alaudah, Yazeed
    AlRegib, Ghassan
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4200 - 4204
  • [4] Multichannel seismic data attenuation compensation via curvelet-based sparsity promotion
    Mo, Tongtong
    Yin, Ying
    Luo, Ren
    Wang, Benfeng
    [J]. GEOPHYSICAL PROSPECTING, 2024, 72 (03) : 897 - 907
  • [5] Curvelet-based snake for multiscale detection and tracking of geophysical fluids
    Ma, Jianwei
    Antoniadis, Anestis
    Le Dimet, Francois-Xavier
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (12): : 3626 - 3638
  • [6] Curvelet-based POCS interpolation of nonuniformly sampled seismic records
    Yang, Pengliang
    Gao, Jinghuai
    Chen, Wenchao
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2012, 79 : 90 - 99
  • [7] Curvelet-based registration of multi-component seismic waves
    Wang, Hairong
    Cheng, Yuanfeng
    Ma, Jianwei
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2014, 104 : 90 - 96
  • [8] Curvelet-based multiple prediction
    Donno, Daniela
    Chauris, Herve
    Noble, Mark
    [J]. GEOPHYSICS, 2010, 75 (06) : WB255 - WB263
  • [9] Application of randomized sampling schemes to curvelet-based sparsity-promoting seismic data recovery
    Shahidi, Reza
    Tang, Gang
    Ma, Jianwei
    Herrmann, Felix J.
    [J]. GEOPHYSICAL PROSPECTING, 2013, 61 (05) : 973 - 997
  • [10] Curvelet-based Compressive Sensing for InSAR Raw Data
    Costa, Marcello Goncalves
    Pinho, Marcelo da Silva
    Fernandes, David
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXI, 2015, 9643