The roles of electrolyte chemistry in hard carbon anode for potassium-ion batteries

被引:44
|
作者
Wu, Zhenrui [1 ]
Zou, Jian [2 ]
Shabanian, Sadaf [1 ]
Golovin, Kevin [1 ]
Liu, Jian [1 ]
机构
[1] Univ British Columbia, Fac Appl Sci, Sch Engn, Kelowna, BC V1V 1V7, Canada
[2] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 610054, Peoples R China
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Lignin; Hard carbon; Potassium-ion batteries; Electrolyte; Kinetics; Ionic storage mechanism; K-ION; SOLVATION; GRAPHITE; CATHODE; SURFACE;
D O I
10.1016/j.cej.2021.130972
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Potassium-ion battery (PIB) is a rising star in the rechargeable battery field due to its potential low cost and high energy for large-scale applications. Hard carbon (HC) is one of the most popular anodes for practical PIBs due to its high K-ion storage and relatively low material cost. However, the role of electrolytes in determining the HC performance and K-ion storage mechanism has been rarely investigated. Herein, we systematically studied the influence of four electrolyte systems, i.e., two K salts (i.e., KPF6 and KFSI) in carbonate ester and ether solvents, on the K-ion mobility, cycling stability, and charge transfer kinetics of the HC anode in PIBs. It is found that HC anode achieved the best cycling stability and kinetics performance in the KFSI EC/DEC electrolyte. Mechanismic study disclosed that the improved performance could be ascribed to the formation of robust KF-rich SEI resulting from FSI- decomposition, which effectively prevented irreversible side reactions and severe structural decay (e.g., exfoliation and pulverization). The degradation mechanisms of other electrolyte systems are also explained from the viewpoints of SEI formation and solvation/desolvation effect. It is expected that this work will provide guidance on the anode and electrolyte selection and design for PIBs in the near future.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Electrolyte Chemistry Enables Simultaneous Stabilization of Potassium Metal and Alloying Anode for Potassium-Ion Batteries
    Wang, Hua
    Yu, Dandan
    Wang, Xiao
    Niu, Zhiqiang
    Chen, Mengxue
    Cheng, Liwei
    Zhou, Wei
    Guo, Lin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (46) : 16451 - 16455
  • [2] Hard Carbon Anode Synthesized by an In Situ Porous Strategy for Advanced Potassium-Ion Batteries
    Shen, Nailu
    Lai, Qingxue
    Chen, Ningning
    Pang, Yinshuang
    Chen, Hong
    Zhang, Wanying
    Liu, Zhi
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (39): : 14572 - 14581
  • [3] Hard Carbon Microspheres: Potassium-Ion Anode Versus Sodium-Ion Anode
    Jian, Zelang
    Xing, Zhenyu
    Bommier, Clement
    Li, Zhifei
    Ji, Xiulei
    ADVANCED ENERGY MATERIALS, 2016, 6 (03)
  • [4] High-Coulombic-Efficiency Hard Carbon Anode Material for Practical Potassium-Ion Batteries
    Tan, Lulu
    Chen, Jiale
    Wang, Linlin
    Li, Nan
    Yang, Yusi
    Chen, Yifan
    Guo, Lin
    Ji, Xiao
    Zhu, Yujie
    BATTERIES & SUPERCAPS, 2024, 7 (05)
  • [5] Non-negligible Influence of Oxygen in Hard Carbon as an Anode Material for Potassium-Ion Batteries
    Liu, Zhengyang
    Wu, Shijie
    Song, Yan
    Yang, Tao
    Ma, Zihui
    Tian, Xiaodong
    Liu, Zhanjun
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (42) : 47674 - 47684
  • [6] Developments and prospects of carbon anode materials in potassium-ion batteries
    Liu, Zhaomeng
    Gong, Zhiqing
    He, Kunyang
    Qiu, Peng
    Wang, Xuan-Chen
    Zhao, Lu-Kang
    Gu, Qin-Fen
    Gao, Xuan-Wen
    Luo, Wen-Bin
    SCIENCE CHINA-MATERIALS, 2024, : 709 - 723
  • [7] RESEARCH PROGRESS ON CARBON ANODE MATERIALS IN POTASSIUM-ION BATTERIES
    Lei, Yu
    Han, Da
    Qin, Lei
    Zhai, Deng-yun
    Kang, Fei-yu
    CARBON, 2020, 159 : 686 - 686
  • [8] Research progress on carbon anode materials in potassium-ion batteries
    Lei Yu
    Han Da
    Qin Lei
    Zhai Deng-yun
    Kang Fei-yu
    NEW CARBON MATERIALS, 2019, 34 (06) : 499 - 511
  • [9] Research progress on carbon anode materials in potassium-ion batteries
    Lei, Yu
    Han, Da
    Qin, Lei
    Zhai, Deng-Yun
    Kang, Fei-Yu
    Xinxing Tan Cailiao/New Carbon Materials, 2019, 34 (06): : 499 - 511
  • [10] Impact of Hard Carbon Properties on Their Performance in Potassium-Ion Batteries
    Larbi, Louiza
    Larhrib, Badre
    Beda, Adrian
    Madec, Lenaic
    Monconduit, Laure
    Ghimbeu, Camelia Matei
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (10) : 5274 - 5289