Bootstrapping quantiles in a fixed design regression model with censored data

被引:25
|
作者
Van Keilegom, I [1 ]
Veraverbeke, N [1 ]
机构
[1] Limburgs Univ Ctr, B-3590 Diepenbeek, Belgium
关键词
asymptotic representation; bootstrap; fixed design; nonparametric regression; quantiles; right censoring;
D O I
10.1016/S0378-3758(97)00126-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of estimating the quantiles of a distribution function in a fixed design regression model in which the observations are subject to random right censoring. The quantile estimator is defined via a conditional Kaplan-Meier type estimator for the distribution at a given design point. We establish an a.s. asymptotic representation for this quantile estimator, from which we obtain its asymptotic normality. Because a complicated estimation procedure is necessary for estimating the asymptotic bias and variance, we use a resampling procedure, which provides us, via an asymptotic representation for the bootstrapped estimator, with an alternative for the normal approximation. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:115 / 131
页数:17
相关论文
共 50 条