Energy management of fuel cell/solar cell/supercapacitor hybrid power source

被引:199
|
作者
Thounthong, Phatiphat [1 ]
Chunkag, Viboon [2 ]
Sethakul, Panarit [1 ]
Sikkabut, Suwat [3 ]
Pierfederici, Serge [4 ]
Davat, Bernard [4 ]
机构
[1] King Mongkuts Univ Technol N Bangkok, Dept Teacher Training Elect Engn, Bangkok 10800, Thailand
[2] King Mongkuts Univ Technol N Bangkok, Dept Elect Engn, Bangkok 10800, Thailand
[3] King Mongkuts Univ Technol N Bangkok, Thai French Innovat Inst, Bangkok 10800, Thailand
[4] Nancy Univ, GREEN, INPL ENSEM, UMR 7037, F-54516 Vandoeuvre Les Nancy, Lorraine, France
关键词
Converter; Energy management; Fuel cell; Photovoltaic array; Supercapacitor; Voltage control; CELL POWER; SYSTEM; GENERATION; BATTERY; DEGRADATION; CAPACITOR; FLATNESS;
D O I
10.1016/j.jpowsour.2010.01.051
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200W, 46A) manufactured by the Ballard Power System Company, a photovoltaic array (800W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:313 / 324
页数:12
相关论文
共 50 条
  • [1] Energy control of supercapacitor/fuel cell hybrid power source
    Payman, Alireza
    Pierfederici, Serge
    Meibody-Tabar, Farid
    ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (06) : 1637 - 1644
  • [2] Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications
    Thounthong, Phatiphat
    Rael, Stephane
    Davat, Bernard
    JOURNAL OF POWER SOURCES, 2009, 193 (01) : 376 - 385
  • [3] Energy Management Strategy of a PEM Fuel Cell Excavator with a Supercapacitor/Battery Hybrid Power Source
    Tri Cuong Do
    Truong, Hoai Vu Anh
    Hoang Vu Dao
    Ho, Cong Minh
    To, Xuan Dinh
    Tri Dung Dang
    Ahn, Kyoung Kwan
    ENERGIES, 2019, 12 (22)
  • [4] Series hybrid fuel cell/supercapacitor power source
    Siangsanoh, A.
    Bahrami, M.
    Kaewmanee, W.
    Gavagsaz-ghoachani, R.
    Phattanasak, M.
    Martin, J. P.
    Nahid-Mobarakeh, B.
    Weber, M.
    Pierfederici, S.
    Maranzana, G.
    Didierjean, S.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 184 : 21 - 40
  • [5] Novel fuel cell/battery/supercapacitor hybrid power source for fuel cell hybrid electric vehicles
    Fathabadi, Hassan
    ENERGY, 2018, 143 : 467 - 477
  • [6] Management and control strategy of a hybrid energy source fuel cell/supercapacitor in electric vehicles
    Rezzak, Daoud
    Boudjerda, Nasserdine
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2017, 27 (06):
  • [7] Energy Management of a Fuel Cell/Supercapacitor/Battery Power Source for Electric Vehicular Applications
    Zandi, Majid
    Payman, Alireza
    Martin, Jean-Philippe
    Pierfederici, Serge
    Davat, Bernard
    Meibody-Tabar, Farid
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2011, 60 (02) : 433 - 443
  • [8] POWER MANAGEMENT FOR A FUEL CELL/BATTERY/SUPERCAPACITOR HYBRID LOCOMOTIVE
    Zhao, Qishen
    Feng, Tianheng
    Chen, Dongmei
    Li, Wei
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE, DSCC2020, VOL 2, 2020,
  • [9] Energy management of PEM fuel cell/supercapacitor hybrid power sources for an electric vehicle
    Allaoua, Boumediene
    Asnoune, Khadidja
    Mebarki, Brahim
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (33) : 21158 - 21166
  • [10] A hybrid power system based on fuel cell, photovoltaic source and supercapacitor
    Ferahtia, Seydali
    Djerioui, Ali
    Zeghlache, Samir
    Houari, Azeddine
    SN APPLIED SCIENCES, 2020, 2 (05):