Solubility of additive forms of twice odd degree over ramified quadratic extensions of Q2

被引:3
|
作者
Duncan, Drew [1 ]
Leep, David B. [2 ]
机构
[1] John Carroll Univ, Dept Math Comp Sci & Data Sci, University Hts, OH 44118 USA
[2] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
forms in many variables; p-adic fields; ramified extensions; additive forms;
D O I
10.4064/aa201116-30-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:149 / 164
页数:16
相关论文
共 18 条
  • [2] Solubility of additive sextic forms over ramified quadratic extensions of Q2
    Knapp, Michael P.
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 95 (1-2): : 67 - 91
  • [3] Solubility of additive quartic forms over ramified quadratic extensions of Q2
    Duncan, Drew
    Leep, David B.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (10) : 2265 - 2278
  • [4] Solubility of Additive Forms of Twice Odd Degree over Q 2 ( √5)
    Duncan, Drew
    Leep, David B.
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2024, 36 (01):
  • [5] Diagonal forms over quadratic extensions of Q2
    Miranda, Bruno De Paula
    Godinho, Hemar
    Knapp, Michael P.
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 101 (1-2): : 63 - 101
  • [6] Solubility of additive sextic forms over Q2 (√-1) and Q2(√-5)
    Duncan, Drew
    Leep, David B.
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 99 (3-4): : 431 - 446
  • [7] On the construction of normal wildly ramified extensions over Q2
    Lbekkouri, Akram
    [J]. ARCHIV DER MATHEMATIK, 2009, 93 (03) : 235 - 243
  • [8] On the construction of normal wildly ramified extensions over Q2
    Akram Lbekkouri
    [J]. Archiv der Mathematik, 2009, 93 : 235 - 243
  • [9] QUADRATIC-FORMS OVER Q AND GALOIS EXTENSIONS OF COMMUTATIVE RINGS
    DEMEYER, F
    HARRISON, D
    MIRANDA, R
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 77 (394) : 1 - 63
  • [10] Springer's Odd Degree Extension Theorem for quadratic forms over semilocal rings
    Gille, Philippe
    Neher, Erhard
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (06): : 1290 - 1310