A Survey of Fuzzy Approaches in Spatial Data Science

被引:1
|
作者
Carniel, Anderson Chaves [1 ]
Schneider, Markus [2 ]
机构
[1] Univ Fed Sao Carlos, Dept Comp Sci, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
关键词
Spatial data science; fuzzy spatial data; spatial fuzziness; fuzzy spatial reasoning; SPATIOTEMPORAL DATA; CLASSIFICATION; SOIL; PREDICTION;
D O I
10.1109/FUZZ45933.2021.9494437
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatial data science emerges as an important subclass of data science and focuses on extracting meaningful information and knowledge from spatial data to enable effective communication and interpretation of both spatial data and analytic results. It emphasizes the importance of location and spatial interaction by storing, analyzing, retrieving, and visualizing spatial and geometric information. Frequently, spatial objects are afflicted by spatial fuzziness, characterizing spatial objects with blurred interiors, uncertain boundaries, and imprecise locations. Fuzzy set theory and fuzzy logic have become powerful tools to adequately represent spatial fuzziness. This paper provides a survey and a review of the literature to understand the application of fuzzy approaches to spatial data science (projects) with the objective of proposing, motivating, and envisioning fuzzy spatial data science.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fuzzy set approaches to spatial data mining of association rules
    Ladner, Roy
    Cobb, Maria A.
    Petry, Frederick E.
    [J]. Transactions in GIS, 2003, 7 (01) : 123 - 138
  • [2] User-centric spatial data warehousing: a survey of requirements and approaches
    Viswanathan, Ganesh
    Schneider, Markus
    [J]. INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2014, 6 (04) : 369 - 390
  • [3] Approaches to semantic similarity measurement for geo-spatial data: A survey
    Schwering, Angela
    [J]. Transactions in GIS, 2008, 12 (01) : 5 - 29
  • [4] Spatial Data Science
    Bacao, Fernando
    Santos, Maribel Yasmina
    Behnisch, Martin
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (07)
  • [5] Data Science Approaches to Pharmacogenetics
    Penrod, N. M.
    Moore, J. H.
    [J]. CURRENT MOLECULAR MEDICINE, 2014, 14 (07) : 805 - 813
  • [6] Bootstrap approaches for spatial data
    Garcia-Soidan, Pilar
    Menezes, Raquel
    Rubinos, Oscar
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2014, 28 (05) : 1207 - 1219
  • [7] Bootstrap approaches for spatial data
    Pilar García-Soidán
    Raquel Menezes
    Óscar Rubiños
    [J]. Stochastic Environmental Research and Risk Assessment, 2014, 28 : 1207 - 1219
  • [8] Fuzzy spatial data mining
    Smith, GB
    Bridges, SM
    [J]. 2002 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY PROCEEDINGS, 2002, : 184 - 189
  • [9] Data Lake Approaches: A Survey
    Zagan, Elisabeta
    Danubianu, Mirela
    [J]. 2020 15TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND APPLICATION SYSTEMS (DAS), 2020, : 189 - 193
  • [10] CyberGIS and spatial data science
    Wang S.
    [J]. GeoJournal, 2016, 81 (6) : 965 - 968