Multi-resolution hierarchical blind recovery of biochemical markers of brain cancer in MRSI

被引:0
|
作者
Du, SY [1 ]
Sajda, P [1 ]
Mao, XL [1 ]
Shungu, D [1 ]
机构
[1] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We present a multi-resolution hierarchical application of the constrained non-negative matrix factorization (cNMF) algorithm [1] for blindly recovering constituent source spectra in magnetic resonance spectroscopic imaging (MRSI). cNMF is an extension of non-negative matrix factorization (NMF) [2] [3] that includes a positivity constraint on amplitudes of recovered spectra. We apply cNMF hierarchically, with spectral recovery and subspace reduction constraining, which observations are used in the next level of processing. The decomposition model recovers physically meaningful spectra which are highly tissue-specific, for example spectra indicative of tumor proliferation, given a processing hierarchy that proceeds coarse-to-fine. We demonstrate the decomposition procedure on H-1 long TE brain MRS data. The results show recovery of markers for normal brain tissue, low proliferative tissue and highly proliferative tissue. The coarse-to-fine hierarchy also makes the algorithm computational efficiency, thus it is potentially well-suited for use in diagnostic work-up.
引用
收藏
页码:233 / 236
页数:4
相关论文
共 50 条
  • [1] Blind recovery of biochemical markers of brain cancer in MRSI
    Du, SY
    Mao, XL
    Shungu, D
    Sajda, P
    [J]. MEDICAL IMAGING 2004: IMAGE PROCESSING, PTS 1-3, 2004, 5370 : 726 - 733
  • [2] Hierarchical multi-resolution mesh networks for brain decoding
    Itir Onal Ertugrul
    Mete Ozay
    Fatos T. Yarman Vural
    [J]. Brain Imaging and Behavior, 2018, 12 : 1067 - 1083
  • [3] Hierarchical multi-resolution mesh networks for brain decoding
    Ertugrul, Itir Onal
    Ozay, Mete
    Vural, Fatos T. Yarman
    [J]. BRAIN IMAGING AND BEHAVIOR, 2018, 12 (04) : 1067 - 1083
  • [4] Multi-scale, multi-resolution brain cancer modeling
    Zhang, Le
    Chen, L. Leon
    Deisboeck, Thomas S.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (07) : 2021 - 2035
  • [5] Enhanced Hierarchical Multi-resolution Imaging
    Prabhakaran, P. Joy
    [J]. INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, ISAT 2019, PT II, 2020, 1051 : 320 - 329
  • [6] Hierarchical and multi-resolution representation of protein flexibility
    Zhao, Yong
    Stoffler, Daniel
    Sanner, Michel
    [J]. BIOINFORMATICS, 2006, 22 (22) : 2768 - 2774
  • [7] Hierarchical multi-resolution decomposition of statistical shape models
    Cerrolaza, Juan J.
    Villanueva, Arantxa
    Cabeza, Rafael
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (06) : 1473 - 1490
  • [8] Planar and spherical hierarchical, multi-resolution cellular automata
    Kiester, A. Ross
    Sahr, Kevin
    [J]. COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2008, 32 (03) : 204 - 213
  • [9] Hierarchical multi-resolution decomposition of statistical shape models
    Juan J. Cerrolaza
    Arantxa Villanueva
    Rafael Cabeza
    [J]. Signal, Image and Video Processing, 2015, 9 : 1473 - 1490
  • [10] Hierarchical Properties of Multi-resolution Optical Flow Computation
    Kameda, Yusuke
    Imiya, Atsushi
    Sakai, Tomoya
    [J]. COMPUTER VISION - ECCV 2012, PT II, 2012, 7584 : 576 - 585