Stochastic Navier-Stokes Equations in Unbounded Channel Domains

被引:1
|
作者
Manna, Utpal [1 ]
Mohan, Manil T. [1 ]
Sritharan, Sivaguru S. [2 ]
机构
[1] IISER Thiruvananthapuram, Sch Math, Thiruvananthapuram 695016, Kerala, India
[2] US Navy, Postgrad Sch, Monterey, CA USA
关键词
Stochastic Navier-Stokes equations; viscous flow in channels; path-wise strong solutions; VISCOUS-FLUID; EXISTENCE; DRIVEN; SOLVABILITY; MARTINGALE; REGULARITY; BOUNDARY; PROOF;
D O I
10.1007/s00021-014-0189-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence and uniqueness of path-wise strong solution to stochastic viscous flow in unbounded channels with multiple outlets using local monotonicity arguments. We devise a construction for solvability using a stochastic basic vector field.
引用
收藏
页码:47 / 86
页数:40
相关论文
共 50 条
  • [1] Stochastic Navier–Stokes Equations in Unbounded Channel Domains
    Utpal Manna
    Manil T. Mohan
    Sivaguru S. Sritharan
    [J]. Journal of Mathematical Fluid Mechanics, 2015, 17 : 47 - 86
  • [2] LIMITING DYNAMICS FOR STOCHASTIC NAVIER-STOKES EQUATIONS ON EXPANDING UNBOUNDED DOMAINS
    Li, Fuzhi
    Li, Yangrong
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (04) : 1077 - 1097
  • [3] PERIODIC RANDOM ATTRACTORS FOR STOCHASTIC NAVIER-STOKES EQUATIONS ON UNBOUNDED DOMAINS
    Wang, Bixiang
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [4] The Navier-Stokes equations over unbounded domains
    Kähler, UU
    [J]. PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 1431 - 1446
  • [5] Navier-Stokes equations with delays on unbounded domains
    Garrido-Atienza, MJ
    Marín-Rubio, P
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) : 1100 - 1118
  • [6] Difference potentials for the Navier-Stokes equations in unbounded domains
    Faustino, N.
    Guerlebeck, K.
    Hommel, A.
    Kaehler, U.
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (06) : 577 - 595
  • [7] Periodic solutions of the Navier-Stokes equations in unbounded domains
    Kozono, H
    Nakao, M
    [J]. TOHOKU MATHEMATICAL JOURNAL, 1996, 48 (01) : 33 - 50
  • [8] INVARIANT MEASURE FOR THE STOCHASTIC NAVIER-STOKES EQUATIONS IN UNBOUNDED 2D DOMAINS
    Brzeniak, Zdzislaw
    Motyl, Elzbieta
    Ondrejat, Martin
    [J]. ANNALS OF PROBABILITY, 2017, 45 (05): : 3145 - 3201
  • [9] Navier-stokes equations on unbounded domains with rough initial data
    Kunstmann, Peer Christian
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (02) : 297 - 313
  • [10] On the energy equality of Navier-Stokes equations in general unbounded domains
    Farwig, Reinhard
    Taniuchi, Yasushi
    [J]. ARCHIV DER MATHEMATIK, 2010, 95 (05) : 447 - 456