Inferring the effect of interventions on COVID-19 transmission networks

被引:5
|
作者
Syga, Simon [1 ]
David-Rus, Diana [2 ]
Schaelte, Yannik [3 ,4 ]
Hatzikirou, Haralampos [5 ]
Deutsch, Andreas [1 ]
机构
[1] Tech Univ Dresden, Ctr Informat Serv & High Performance Comp, Nothnitzer Str 46, D-01062 Dresden, Germany
[2] Bavarian Hlth & Food Safety State Author LGL, Vet Str 2, D-85764 Oberschleissheim, Germany
[3] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Computat Biol, D-85764 Neuherberg, Germany
[4] Tech Univ Munich, Ctr Math, D-85748 Garching, Germany
[5] Khalifa Univ, Math Dept, POB 127788, Abu Dhabi, U Arab Emirates
关键词
SMALL-WORLD; COMPLEX; IMPACT; MODEL;
D O I
10.1038/s41598-021-01407-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Countries around the world implement nonpharmaceutical interventions (NPIs) to mitigate the spread of COVID-19. Design of efficient NPIs requires identification of the structure of the disease transmission network. We here identify the key parameters of the COVID-19 transmission network for time periods before, during, and after the application of strict NPIs for the first wave of COVID-19 infections in Germany combining Bayesian parameter inference with an agent-based epidemiological model. We assume a Watts-Strogatz small-world network which allows to distinguish contacts within clustered cliques and unclustered, random contacts in the population, which have been shown to be crucial in sustaining the epidemic. In contrast to other works, which use coarse-grained network structures from anonymized data, like cell phone data, we consider the contacts of individual agents explicitly. We show that NPIs drastically reduced random contacts in the transmission network, increased network clustering, and resulted in a previously unappreciated transition from an exponential to a constant regime of new cases. In this regime, the disease spreads like a wave with a finite wave speed that depends on the number of contacts in a nonlinear fashion, which we can predict by mean field theory.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Inferring the effect of interventions on COVID-19 transmission networks
    Simon Syga
    Diana David-Rus
    Yannik Schälte
    Haralampos Hatzikirou
    Andreas Deutsch
    [J]. Scientific Reports, 11
  • [2] Inferring the effectiveness of government interventions against COVID-19
    Brauner, Jan M.
    Mindermann, Soren
    Sharma, Mrinank
    Johnston, David
    Salvatier, John
    Gavenciak, Tomas
    Stephenson, Anna B.
    Leech, Gavin
    Altman, George
    Mikulik, Vladimir
    Norman, Alexander John
    Monrad, Joshua Teperowski
    Besiroglu, Tamay
    Ge, Hong
    Hartwick, Meghan A.
    Teh, Yee Whye
    Chindelevitch, Leonid
    Gal, Yarin
    Kulveit, Jan
    [J]. SCIENCE, 2021, 371 (6531) : 802 - +
  • [3] The effect of interventions on COVID-19
    Kristian Soltesz
    Fredrik Gustafsson
    Toomas Timpka
    Joakim Jaldén
    Carl Jidling
    Albin Heimerson
    Thomas B. Schön
    Armin Spreco
    Joakim Ekberg
    Örjan Dahlström
    Fredrik Bagge Carlson
    Anna Jöud
    Bo Bernhardsson
    [J]. Nature, 2020, 588 : E26 - E28
  • [4] The effect of interventions on COVID-19
    Soltesz, Kristian
    Gustafsson, Fredrik
    Timpka, Toomas
    Jalden, Joakim
    Jidling, Carl
    Heimerson, Albin
    Schon, Thomas B.
    Spreco, Armin
    Ekberg, Joakim
    Dahlstrom, Orjan
    Bagge Carlson, Fredrik
    Joud, Anna
    Bernhardsson, Bo
    [J]. NATURE, 2020, 588 (7839) : E26 - E32
  • [5] Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions
    Dehning, Jonas
    Zierenberg, Johannes
    Spitzner, F. Paul
    Wibral, Michael
    Pinheiro Neto, Joao
    Wilczek, Michael
    Priesemann, Viola
    [J]. SCIENCE, 2020, 369 (6500) : 160 - +
  • [6] The effect of interventions on COVID-19 Reply
    Flaxman, Seth
    Mishra, Swapnil
    Scott, James
    Ferguson, Neil
    Gandy, Axel
    Bhatt, Samir
    [J]. NATURE, 2020, 588 (7839) : E29 - E32
  • [7] Reply to: The effect of interventions on COVID-19
    Seth Flaxman
    Swapnil Mishra
    James Scott
    Neil Ferguson
    Axel Gandy
    Samir Bhatt
    [J]. Nature, 2020, 588 : E29 - E32
  • [8] Effectiveness of interventions to reduce COVID-19 transmission in schools
    Pasco, Remy
    Fox, Spencer J.
    Lachmann, Michael
    Meyers, Lauren Ancel
    [J]. EPIDEMICS, 2024, 47
  • [9] The Effect of COVID-19 Transmission on Cryptocurrencies
    Dardouri, Nesrine
    Aguir, Abdelkader
    Smida, Mounir
    [J]. RISKS, 2023, 11 (08)
  • [10] Estimation of COVID-19 Transmission and Advice on Public Health Interventions
    Ji, Qingqing
    Zhao, Xu
    Ma, Hanlin
    Liu, Qing
    Liu, Yiwen
    Guan, Qiyue
    [J]. MATHEMATICS, 2021, 9 (22)