A (rough) pathwise approach to a class of non-linear stochastic partial differential equations

被引:46
|
作者
Caruana, Michael [3 ]
Friz, Peter K. [1 ,2 ]
Oberhauser, Harald [1 ]
机构
[1] TU Berlin, Berlin, Germany
[2] WIAS Berlin, Berlin, Germany
[3] King Fahd Univ Petr & Minerals, Dhahran, Saudi Arabia
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Parabolic viscosity PDEs; Stochastic PDEs; Rough path theory; WONG-ZAKAI TYPE; LINEAR PARABOLIC EQUATIONS; VISCOSITY SOLUTIONS; APPROXIMATIONS; UNIQUENESS; SIGNALS; THEOREM; DRIVEN; PATHS; AREA;
D O I
10.1016/j.anihpc.2010.11.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-linear parabolic evolution equations of the form partial derivative(t)u = F(t, x, Du, D(2)u), subject to noise of the form H(x, Du) o dB where H is linear in Du and odB denotes the Stratonovich differential of a multi-dimensional Brownian motion. Motivated by the essentially pathwise results of [P.-L. Lions, P.E. Souganidis, Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Ser. I Math. 326 (9) (1998) 1085-1092] we propose the use of rough path analysis [T.J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (2) (1998) 215-310] in this context. Although the core arguments are entirely deterministic, a continuity theorem allows for various probabilistic applications (limit theorems, support, large deviations, ...). (c) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:27 / 46
页数:20
相关论文
共 50 条