Machine Learning Assisted Predictions of Intrinsic Dielectric Breakdown Strength of ABX3 Perovskites

被引:173
|
作者
Kim, Chiho [1 ,2 ]
Pilania, Ghanshyam [3 ]
Ramprasad, Rampi [1 ,2 ]
机构
[1] Univ Connecticut, Dept Mat Sci & Engn, 97 North Eagleville Rd, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, 97 North Eagleville Rd, Storrs, CT 06269 USA
[3] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2016年 / 120卷 / 27期
关键词
RATIONAL DESIGN; ELECTRON-GAS; SILICON; OXIDES; FIELD; REDISTRIBUTION;
D O I
10.1021/acs.jpcc.6b05068
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
New and improved dielectric materials with high dielectric breakdown strength are required for both high energy density electric energy storage applications and continued miniaturization of electronic devices. Despite much practical significance, accurate ab initio predictions of dielectric breakdown strength for complex materials are beyond the current state-of-the art. Here we take an alternative data-enabled route to address this design problem. Our informatics-based approach employs a transferable machine learning model, trained and validated on a limited amount of accurate data generated through laborious first-principles computations, to predict intrinsic dielectric breakdown strength of several hundreds of chemical compositions in a highly efficient manner. While the adopted approach is quite general, here we take up a specific example of perovskite materials to demonstrate the efficacy of our method. Starting from several thousands of compounds, we systematically downselect 209 insultors which are dynamically stable in a perovskite crystal structure. After making predictions on these compounds using our machine learning model, the intrinsic dielectric breakdown strength was further cross-validated using first-principles computations. Our analysis reveals that boron-containing compounds are of particular interest, some of which exhibit remarkable intrinsic breakdown strength of almost 2 GV/m.
引用
收藏
页码:14575 / 14580
页数:6
相关论文
共 50 条
  • [1] Accelerating stability of ABX3 perovskites analysis with machine learning
    Zhu, Yunlai
    Zhang, Jishun
    Qu, Zihan
    Jiang, Shuo
    Liu, Yu
    Wu, Zuheng
    Yang, Fei
    Hu, Wei
    Xu, Zuyu
    Dai, Yuehua
    CERAMICS INTERNATIONAL, 2024, 50 (04) : 6250 - 6258
  • [2] Explainable machine learning for predicting the band gaps of ABX3 perovskites
    Obada, David O.
    Okafor, Emmanuel
    Abolade, Simeon A.
    Ukpong, Aniekan M.
    Dodoo-Arhin, David
    Akande, Akinlolu
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2023, 161
  • [3] Machine learning -driven predictions of lattice constants in ABX3 Perovskite Materials
    Alfares, Abdulgafor
    Sha'aban, Yusuf Abubakar
    Alhumoud, Ahmed
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 141
  • [4] Machine Learning for Predicting the Band Gaps of ABX3 Perovskites from Elemental Properties
    Gladkikh, Vladislav
    Kim, Dong Yeon
    Hajibabaei, Amir
    Jana, Atanu
    Myung, Chang Woo
    Kim, Kwang S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (16): : 8905 - 8918
  • [5] ABX3 Perovskites for Tandem Solar Cells
    Anaya, Miguel
    Lozano, Gabriel
    Calvo, Mauricio E.
    Miguez, Hernan
    JOULE, 2017, 1 (04) : 769 - 793
  • [6] The wondrous world of ABX3 molecular perovskites
    Kronawitter, Silva M.
    Kieslich, Gregor
    CHEMICAL COMMUNICATIONS, 2024, 60 (82) : 11673 - 11684
  • [7] Structural Chemistry of ABX3 Molecular Perovskites
    Kieslich, G.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : E83 - E83
  • [8] A comprehensive theoretical study of halide perovskites ABX3
    Qian, Jingyu
    Xu, Bin
    Tian, Wenjing
    ORGANIC ELECTRONICS, 2016, 37 : 61 - 73
  • [9] On the polyhedral volume ratiosVA/VB in perovskites ABX3
    Avdeev, Maxim
    Caspi, El'ad N.
    Yakovlev, Sergey
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2007, 63 (363-372): : 363 - 372
  • [10] DYNAMICS OF THE NH4+ ION IN ABX3 PEROVSKITES
    BARTOLOME, J
    PALACIO, F
    CALLEJA, JM
    AGULLORUEDA, F
    TORNERO, J
    CARDONA, M
    MIGONI, R
    JOURNAL OF MOLECULAR STRUCTURE, 1986, 143 : 75 - 78