Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits

被引:67
|
作者
Crawford, Lorin [1 ,2 ,3 ]
Zeng, Ping [4 ,5 ]
Mukherjee, Sayan [6 ,7 ,8 ,9 ]
Zhou, Xiang [4 ,5 ]
机构
[1] Brown Univ, Dept Biostat, Providence, RI 02912 USA
[2] Brown Univ, Ctr Stat Sci, Providence, RI 02912 USA
[3] Brown Univ, Ctr Computat Mol Biol, Providence, RI 02912 USA
[4] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI 48109 USA
[6] Duke Univ, Dept Stat Sci, Durham, NC USA
[7] Duke Univ, Dept Comp Sci, Durham, NC 27706 USA
[8] Duke Univ, Dept Math, Durham, NC 27706 USA
[9] Duke Univ, Dept Bioinformat & Biostat, Durham, NC USA
来源
PLOS GENETICS | 2017年 / 13卷 / 07期
基金
美国国家卫生研究院; 美国国家科学基金会; 英国惠康基金;
关键词
LINEAR MIXED MODELS; MISSING HERITABILITY; BIAS CORRECTION; COMPLEX TRAITS; ASSOCIATION; COMPONENT; NETWORKS; TRANSCRIPTOME; DISTRIBUTIONS; ARCHITECTURE;
D O I
10.1371/journal.pgen.1006869
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Epistasis, commonly defined as the interaction between multiple genes, is an important genetic component underlying phenotypic variation. Many statistical methods have been developed to model and identify epistatic interactions between genetic variants. However, because of the large combinatorial search space of interactions, most epistasis mapping methods face enormous computational challenges and often suffer from low statistical power due to multiple test correction. Here, we present a novel, alternative strategy for mapping epistasis: instead of directly identifying individual pairwise or higher-order interactions, we focus on mapping variants that have non-zero marginal epistatic effects-the combined pairwise interaction effects between a given variant and all other variants. By testing marginal epistatic effects, we can identify candidate variants that are involved in epistasis without the need to identify the exact partners with which the variants interact, thus potentially alleviating much of the statistical and computational burden associated with standard epistatic mapping procedures. Our method is based on a variance component model, and relies on a recently developed variance component estimation method for efficient parameter inference and p-value computation. We refer to our method as the "MArginal ePIstasis Test", or MAPIT. With simulations, we show how MAPIT can be used to estimate and test marginal epistatic effects, produce calibrated test statistics under the null, and facilitate the detection of pairwise epistatic interactions. We further illustrate the benefits of MAPIT in a QTL mapping study by analyzing the gene expression data of over 400 individuals from the GEUVADIS consortium.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Pleiotropy, epistasis and the genetic architecture of quantitative traits
    Mackay, Trudy F. C.
    Anholt, Robert R. H.
    [J]. NATURE REVIEWS GENETICS, 2024, 25 (09) : 639 - 657
  • [2] Epistasis dominates the genetic architecture of Drosophila quantitative traits
    Huang, Wen
    Richards, Stephen
    Carbone, Mary Anna
    Zhu, Dianhui
    Anholt, Robert R. H.
    Ayroles, Julien F.
    Duncan, Laura
    Jordan, Katherine W.
    Lawrence, Faye
    Magwire, Michael M.
    Warner, Crystal B.
    Blankenburg, Kerstin
    Han, Yi
    Javaid, Mehwish
    Jayaseelan, Joy
    Jhangiani, Shalini N.
    Muzny, Donna
    Ongeri, Fiona
    Perales, Lora
    Wu, Yuan-Qing
    Zhang, Yiqing
    Zou, Xiaoyan
    Stone, Eric A.
    Gibbs, Richard A.
    Mackay, Trudy F. C.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (39) : 15553 - 15559
  • [3] Detecting epistasis in human complex traits
    Wen-Hua Wei
    Gibran Hemani
    Chris S. Haley
    [J]. Nature Reviews Genetics, 2014, 15 : 722 - 733
  • [4] Detecting epistasis in human complex traits
    Wei, Wen-Hua
    Hemani, Gibran
    Haley, Chris S.
    [J]. NATURE REVIEWS GENETICS, 2014, 15 (11) : 722 - 733
  • [5] Developing genetic risk model for quantitative traits considering epistasis
    Park, J.
    Kim, I.
    Chae, J.
    Kim, G.
    Won, H.
    Park, W.
    Kim, J.
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 663 - 664
  • [6] Epistasis, complex traits, and mapping genes
    Michael J. Wade
    [J]. Genetica, 2001, 112-113 : 59 - 69
  • [7] Epistasis, complex traits, and mapping genes
    Wade, MJ
    [J]. GENETICA, 2001, 112 (1) : 59 - 69
  • [8] Bayesian neural networks for detecting epistasis in genetic association studies
    Andrew L Beam
    Alison Motsinger-Reif
    Jon Doyle
    [J]. BMC Bioinformatics, 15
  • [9] Bayesian neural networks for detecting epistasis in genetic association studies
    Beam, Andrew L.
    Motsinger-Reif, Alison
    Doyle, Jon
    [J]. BMC BIOINFORMATICS, 2014, 15
  • [10] Detecting Epistasis among Candidate Genes using Quantitative Traits and Family Trios
    Lozano, J. P.
    Bickeboeller, H.
    [J]. GENETIC EPIDEMIOLOGY, 2008, 32 (07) : 705 - 705