Video Shots Annotation using Random Forest

被引:0
|
作者
Cai, Cheng [1 ]
Zhao, Li [1 ]
机构
[1] Northwest A&F Univ, Coll Informat Engn, Dept Comp Sci, Yangling, Peoples R China
关键词
Random Forest; Video Annotation; Keyframe; K-means;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With dramatically increasing of video resources, manually semantic video annotation requires extensive human power. Automatic annotation is an efficient and appropriate solution. In this paper, a tag propagation scheme using random forest is applied on video shot semantic annotation. For the content representation of each video shot, multiple keyframes are extracted using K-means clustering method. We train random forest with tag distribution information gain criterion, and estimate the probabilities of assigning tags to annotate each keyframe. The final predicted semantic tags of video shot comes from the weighted summation of probabilities of assigning tags of all keyframes. The experimental results on videos indicate that our video shot annotation based on random forest achieves good performance.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Random Forest for Image Annotation
    Fu, Hao
    Zhang, Qian
    Qiu, Guoping
    [J]. COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 : 86 - 99
  • [2] HABITAT CLASSIFICATION USING RANDOM FOREST BASED IMAGE ANNOTATION
    Torres, Mercedes
    Qiu, Guoping
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 1491 - 1495
  • [3] Semantic Aware Video Transcription Using Random Forest Classifiers
    Sun, Chen
    Nevatia, Ram
    [J]. COMPUTER VISION - ECCV 2014, PT I, 2014, 8689 : 772 - 786
  • [4] Video shots comparison using the mallows distance
    Grana, Costantino
    Borghesani, Daniele
    Cucchiara, Rita
    [J]. DEXA 2007: 18TH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2007, : 49 - +
  • [5] Automatic Image Annotation using Minimum Barrier Salient Object Detection and Random Forest
    Hendrawati, T.
    Sukajaya, I. N.
    Aryanto, K. Y. E.
    [J]. 2018 INTERNATIONAL SEMINAR ON INTELLIGENT TECHNOLOGY AND ITS APPLICATIONS (ISITIA 2018), 2018, : 305 - 310
  • [6] Video Summarization using Convolutional Neural Network and Random Forest Classifier
    Nair, Madhu S.
    Mohan, Jesna
    [J]. PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 476 - 480
  • [7] Classification of video shots using activity power flow
    Gillespie, WJ
    Nguyen, DT
    [J]. CCNC 2004: 1ST IEEE CONSUMER COMMUNICATIONS AND NETWORKING CONFERENCE, PROCEEDINGS: CONSUMER NETWORKING: CLOSING THE DIGITAL DIVIDE, 2004, : 336 - 340
  • [8] Using topic concepts for semantic video shots classification
    Ayache, Stephane
    Quenot, Georges
    Gensel, Jerome
    Satoh, Shin'ichi
    [J]. IMAGE AND VIDEO RETRIEVAL, PROCEEDINGS, 2006, 4071 : 300 - 309
  • [9] Video scene retrieval using online video annotation
    Masuda, Tomoki
    Yamamoto, Daisuke
    Ohira, Shigeki
    Nagao, Katashi
    [J]. NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2008, 4914 : 54 - +
  • [10] Video annotation based on temporally consistent Gaussian random field
    Tang, J.
    Hua, X.-S.
    Mei, T.
    Qi, G.-J.
    Wu, X.
    [J]. ELECTRONICS LETTERS, 2007, 43 (08) : 448 - 449