Phylogenetic MCMC algorithms are misleading on mixtures of trees

被引:116
|
作者
Mossel, E [1 ]
Vigoda, E
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
关键词
D O I
10.1126/science.1115493
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Markov chain Monte Carlo (MCMC) algorithms play a critical role in the Bayesian approach to phylogenetic inference. We present a theoretical analysis of the rate of convergence of many of the widely used Markov chains. For N characters generated from a uniform mixture of two trees, we prove that the Markov chains take an exponentially long (in N) number of iterations to converge to the posterior distribution. Nevertheless, the likelihood plots for sample runs of the Markov chains deceivingly suggest that the chains converge rapidly to a unique tree. Our results rely on novel mathematical understanding of the log-likelihood function on the space of phylogenetic trees. The practical implications of our work are that Bayesian MCMC methods can be misleading when the data are generated from a mixture of trees. Thus, in cases of data containing potentially conflicting phylogenetic signals, phylogenetic reconstruction should be performed separately on each signal.
引用
收藏
页码:2207 / 2209
页数:3
相关论文
共 50 条
  • [21] Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees
    Baste, Julien
    Paul, Christophe
    Sau, Ignasi
    Scornavacca, Celine
    BULLETIN OF MATHEMATICAL BIOLOGY, 2017, 79 (04) : 920 - 938
  • [22] Embedding gene trees into phylogenetic networks by conflict resolution algorithms
    Marcin Wawerka
    Dawid Dąbkowski
    Natalia Rutecka
    Agnieszka Mykowiecka
    Paweł Górecki
    Algorithms for Molecular Biology, 17
  • [23] On the efficiency of adaptive MCMC algorithms
    Andrieu, Christophe
    Atchade, Yves F.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 336 - 349
  • [24] Investigating Populational Evolutionary Algorithms to Add Vertical Meaning in Phylogenetic Trees
    Cerutti, Francesco
    Bertolotti, Luigi
    Goldberg, Tony L.
    Giacobini, Mario
    EVOLUTIONARY COMPUTATION, MACHINE LEARNING AND DATA MINING IN BIOINFORMATICS, PROCEEDINGS, 2010, 6023 : 240 - +
  • [25] Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees
    Larget, B
    Simon, DL
    MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (06) : 750 - 759
  • [26] MCMC algorithms for Subset Simulation
    Papaioannou, Iason
    Betz, Wolfgang
    Zwirglmaier, Kilian
    Straub, Daniel
    PROBABILISTIC ENGINEERING MECHANICS, 2015, 41 : 89 - 103
  • [27] Nested Adaptation of MCMC Algorithms
    Dao Nguyen
    de Valpine, Perry
    Atchade, Yves
    Turek, Daniel
    Michaud, Nicholas
    Paciorek, Christopher
    BAYESIAN ANALYSIS, 2020, 15 (04): : 1323 - 1343
  • [28] Parallelizing MCMC with Random Partition Trees
    Wang, Xiangyu
    Guo, Fangjian
    Heller, Katherine A.
    Dunson, David B.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [29] BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC
    Satija, Rahul
    Novak, Adam
    Miklos, Istvan
    Lyngso, Rune
    Hein, Jotun
    BMC EVOLUTIONARY BIOLOGY, 2009, 9
  • [30] BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC
    Rahul Satija
    Ádám Novák
    István Miklós
    Rune Lyngsø
    Jotun Hein
    BMC Evolutionary Biology, 9