Semi-supervised Variational Multi-view Anomaly Detection

被引:0
|
作者
Wang, Shaoshen [1 ]
Chen, Ling [1 ]
Hussain, Farookh [1 ]
Zhang, Chengqi [1 ]
机构
[1] Univ Technol Sydney, Sydney, NSW, Australia
来源
关键词
Multi-view anomaly detection; VAE; Semi-supervised;
D O I
10.1007/978-3-030-85896-4_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view anomaly detection (Multi-view AD) is a challenging problem due to the inconsistent behaviors across multiple views. Meanwhile, learning useful representations with little or no supervision has attracted much attention in machine learning. There are a large amount of recent advances in representation learning focusing on deep generative models, such as Variational Auto Encoder (VAE). In this study, by utilizing the representation learning ability of VAE and manipulating the latent variables properly, we propose a novel Bayesian generative model as a semi-supervised multi-view anomaly detector, called MultiVAE. We conduct experiments to evaluate the performance of MultiVAE on multi-view data. The experimental results demonstrate that MultiVAE outperforms the state-of-the-art competitors across popular datasets for semi-supervised multi-view AD. As far as we know, this is the first work that applies VAE-based deep models on multi-view AD.
引用
收藏
页码:125 / 133
页数:9
相关论文
共 50 条
  • [1] Inductive Multi-View Semi-Supervised Anomaly Detection via Probabilistic Modeling
    Wang, Zhen
    Fan, Maohong
    Muknahallipatna, Suresh
    Lan, Chao
    [J]. 2019 10TH IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (ICBK 2019), 2019, : 257 - 264
  • [2] View Construction for Multi-view Semi-supervised Learning
    Sun, Shiliang
    Jin, Feng
    Tu, Wenting
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT I, 2011, 6675 : 595 - 601
  • [3] A Semi-Supervised Multi-View Genetic Algorithm
    Lazarova, Gergana
    Koychev, Ivan
    [J]. 2014 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, MODELLING AND SIMULATION, 2014, : 87 - 91
  • [4] Multi-view semi-supervised classification overview
    Jiang, Lekang
    [J]. PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,
  • [5] Semi-supervised Multi-view Sentiment Analysis
    Lazarova, Gergana
    Koychev, Ivan
    [J]. COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2015), PT I, 2015, 9329 : 181 - 190
  • [6] Semi-supervised Deep Multi-view Stereo
    Xu, Hongbin
    Chen, Weitao
    Liu, Yang
    Zhou, Zhipeng
    Xiao, Haihong
    Sun, Baigui
    Xie, Xuansong
    Kang, Wenxiong
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 4616 - 4625
  • [7] Semi-supervised multi-view concept decomposition
    Jiang, Qi
    Zhou, Guoxu
    Zhao, Qibin
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 241
  • [8] Latent Multi-view Semi-Supervised Classification
    Bo, Xiaofan
    Kang, Zhao
    Zhao, Zhitong
    Su, Yuanzhang
    Chen, Wenyu
    [J]. ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 348 - 362
  • [9] Efficient multi-view semi-supervised feature selection
    Zhang, Chenglong
    Jiang, Bingbing
    Wang, Zidong
    Yang, Jie
    Lu, Yangfeng
    Wu, Xingyu
    Sheng, Weiguo
    [J]. INFORMATION SCIENCES, 2023, 649
  • [10] Multi-view semi-supervised learning for image classification
    Zhu, Songhao
    Sun, Xian
    Jin, Dongliang
    [J]. NEUROCOMPUTING, 2016, 208 : 136 - 142