Nonparametric density estimation under unimodality and monotonicity constraints

被引:74
|
作者
Cheng, MY [1 ]
Gasser, T
Hall, P
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
[2] Univ Zurich, Dept Biostat, CH-8006 Zurich, Switzerland
[3] Australian Natl Univ, Ctr Math & Its Applicat, Canberra, ACT 0200, Australia
关键词
curve estimation; isotonic regression; iteration; kernel methods; mode; mode testing; probability transform; recursion; smoothing; turning point;
D O I
10.2307/1390917
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a recursive method for estimating a probability density subject to constraints of unimodality or monotonicity. It uses an empirical estimate of the probability transform to construct a sequence of maps of a known template, which satisfies the constraints. The algorithm may be employed without a smoothing step, in which case it produces step-function approximations to the sampling density. More satisfactorily, a certain amount of smoothing may be interleaved between each recursion, in which case the estimate is smooth. The amount of smoothing may be chosen using a standard cross-validation algorithm. Unlike other methods for density estimation, however, the recursive approach is robust against variation of the amount of smoothing, and so choice of bandwidth is not critical.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] NONPARAMETRIC INSTRUMENTAL VARIABLE ESTIMATION UNDER MONOTONICITY
    Chetverikov, Denis
    Wilhelm, Daniel
    [J]. ECONOMETRICA, 2017, 85 (04) : 1303 - 1320
  • [2] Optimal Rates for Nonparametric Density Estimation Under Communication Constraints
    Acharya, Jayadev
    Canonne, Clement L.
    Singh, Aditya Vikram
    Tyagi, Himanshu
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (03) : 1939 - 1961
  • [3] Optimal Rates for Nonparametric Density Estimation under Communication Constraints
    Acharya, Jayadev
    Canonne, Clement L.
    Singh, Aditya Vikram
    Tyagi, Himanshu
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [4] On matrix estimation under monotonicity constraints
    Chatterjee, Sabyasachi
    Guntuboyina, Adityanand
    Sen, Bodhisattva
    [J]. BERNOULLI, 2018, 24 (02) : 1072 - 1100
  • [5] Nonparametric and semiparametric regressions subject to monotonicity constraints: Estimation and forecasting
    Lee, Tae-Hwy
    Tu, Yundong
    Ullah, Aman
    [J]. JOURNAL OF ECONOMETRICS, 2014, 182 (01) : 196 - 210
  • [6] Nonparametric estimation of hazard rate under the constraint of monotonicity
    Hall, P
    Huang, LS
    Gifford, JA
    Gijbels, I
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2001, 10 (03) : 592 - 614
  • [7] Nonparametric function estimation subject to monotonicity, convexity and other shape constraints
    Shively, Thomas S.
    Walker, Stephen G.
    Damien, Paul
    [J]. JOURNAL OF ECONOMETRICS, 2011, 161 (02) : 166 - 181
  • [8] Estimation in Tournaments and Graphs Under Monotonicity Constraints
    Chatterjee, Sabyasachi
    Mukherjee, Sumit
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (06) : 3525 - 3539
  • [9] On Nonparametric Ordinal Classification with Monotonicity Constraints
    Kotlowski, Wojciech
    Slowinski, Roman
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2013, 25 (11) : 2576 - 2589
  • [10] Nonparametric kernel regression subject to monotonicity constraints
    Hall, P
    Huang, LS
    [J]. ANNALS OF STATISTICS, 2001, 29 (03): : 624 - 647