An Improved SOM-based Visualization Technique for DNA Microarray Data Analysis

被引:0
|
作者
Patra, Jagdish C. [1 ]
Abraham, Jacob [1 ]
Meher, Pramod K. [2 ]
Chakraborty, Goutam [3 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Singapore, Singapore
[2] Inst Infocomm Res, Dept Commun Syst, Singapore, Singapore
[3] Iwate Prefectural Univ, Dept Software & Informat Sci, Sugo, Japan
关键词
SELF-ORGANIZING MAPS; GENE-EXPRESSION DATA; CDNA MICROARRAY; CLASS DISCOVERY; HUMAN CANCER; PATTERNS; IDENTIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Effective and meaningful visualization techniques are quite important for multidimensional DNA microarray gene expression data analysis. Elucidating the cluster properties of these multidimensional data are often complex. Patterns, hypotheses on the relationships, and ultimately of the function of the gene can be analyzed and visualized by non-linear reduction of the multidimensional data to a lower dimension. In this paper, an improved SOM visualization technique named Improved Side Intensity Modulated (ISIM) Self-Organizing Map (SOM) has been proposed and compared with other SOM based visualization techniques. On different datasets, ISIM-SOM is found to offer better cluster boundary, simplicity and clarity.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A new SOM-based visualization technique for DNA microarray data
    Patra, Jagdish C.
    Ang, Ee Luang
    Meher, Pramod K.
    Zhen, Qin
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 4429 - +
  • [2] A SOM-Based Method for Manifold Learning and Visualization
    Shao, Chao
    Zhang, Xinxiang
    Wan, Chunhong
    Shang, Wenqian
    [J]. INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 312 - +
  • [3] SOM-based exploratory analysis of gene expression data
    Kaski, S
    [J]. ADVANCES IN SELF-ORGANISING MAPS, 2001, : 124 - 131
  • [4] Hyperbolic SOM-based clustering of DNA fragment features for taxonomic visualization and classification
    Martin, Christian
    Diaz, Naryttza N.
    Ontrup, Joerg
    Nattkemper, Tim W.
    [J]. BIOINFORMATICS, 2008, 24 (14) : 1568 - 1574
  • [5] A novel technique for data visualization based on SOM
    Liao, GL
    Shi, TL
    Liu, SY
    Xuan, JP
    [J]. ARTIFICIAL NEURAL NETWORKS: BIOLOGICAL INSPIRATIONS - ICANN 2005, PT 1, PROCEEDINGS, 2005, 3696 : 421 - 426
  • [6] SOM-based Visualization for Classifying Large-scale Sensing Data of Moonquakes
    Goto, Yasumichi
    Yamada, Ryuhei
    Yamamoto, Yukio
    Yokoyama, Shohei
    Ishikawa, Hiroshi
    [J]. 2013 EIGHTH INTERNATIONAL CONFERENCE ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING (3PGCIC 2013), 2013, : 630 - 634
  • [7] SOM-based data analysis of speculative attacks' real effects
    Rueda, Ismael E. Arciniegas
    Arciniegas, Fabio A.
    [J]. INTELLIGENT DATA ANALYSIS, 2009, 13 (02) : 261 - 300
  • [8] SOM-based Visualization Monitoring and Fault Diagnosis for Chemical Process
    Zhong, Bin
    Wang, Jing
    Wu, Haiyan
    Zhou, Jinglin
    Jin, Qibing
    [J]. PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 5844 - 5849
  • [9] Application of SOM-Based Visualization Maps for Time-Response Analysis of Industrial Processes
    Prada, Miguel A.
    Dominguez, Manuel
    Diaz, Ignacio
    Fuertes, Juan J.
    Reguera, Perfecto
    Moran, Antonio
    Alonso, Serafin
    [J]. ARTIFICIAL NEURAL NETWORKS-ICANN 2010, PT II, 2010, 6353 : 392 - +
  • [10] Synchronization analysis of Epileptic ECOG data using SOM-based SI measure
    Hegde, A
    Erdogmus, D
    Principe, JC
    [J]. PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 952 - 955