Evaluation of macro and micronutrient elements content from soft drinks using principal component analysis and Kohonen self-organizing maps

被引:23
|
作者
Silva, Emanuela dos Santos [1 ]
Paranhos da Silva, Erik Galvao [2 ]
Silva, Danielen dos Santos [1 ]
Novaes, Cleber Galvao [1 ]
Carqueija Amorim, Fabio Alan [2 ]
Silva dos Santos, Marcio Jose [1 ]
Bezerra, Marcos Almeida [1 ]
机构
[1] Univ Estadual Sudoeste Bahia, Dept Ciencias & Tecnol, Campus Jequie,Rua Jose Moreira Sobrinho S-N, BR-45208091 Jequie, BA, Brazil
[2] Univ Estadual Santa Cruz, Dept Ciencias Exatas & Tecnol, Campus Soane Nazare de Andrade,Km 16 BR 415, BR-45662900 Ilheus, BA, Brazil
关键词
Soft drinks; Kohonen maps; Neural network; Principal component analysis; Elemental analysis; ICP OES; SPME-GC-MS; CLASSIFICATION; CHEMOMETRICS; OILS; SPECTROSCOPY; VARIETIES; BEVERAGES; SPECTRA; METALS;
D O I
10.1016/j.foodchem.2018.06.021
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This study approaches the determination of nine elements from Brazilian carbonated soft drinks of several flavors and manufactures using inductively coupled plasma optical emission spectrometry (ICP OES). The concentrations of the elements varied as follows: (in mu g L-1: Cu: 4.00-78.0; Fe: 74.0-506; Mn: 20.0-66.0; Zn: 104-584) and (in mg L-1: Ca: 4.81-16.2; K: 6.73-260; Na: 26.0-175; S: 1.43-5.41; P: 0.186-219). Principal component analysis has shown some tendencies to form two groups according to the drink flavor (orange and cola), but only cola presented a clear and complete separation. Using Kohonen maps, it was observed a tendency to form three flavor groups: (i) cola, (ii) orange and lemon, and (iii) guarana. However, this last tool proved to be more accurate in the groups' formation.
引用
收藏
页码:9 / 14
页数:6
相关论文
共 50 条
  • [1] Screening of Passiflora L. mineral content using principal component analysis and Kohonen self-organizing maps
    Novaes, Cleber Galvao
    da Silva Romao, Ivana Lago
    Santos, Berlane Gomes
    Ribeiro, Jessica Palhares
    Bezerra, Marcos Almeida
    Paranhos da Silva, Erik Galvao
    [J]. FOOD CHEMISTRY, 2017, 233 : 507 - 513
  • [2] Environment classification using Kohonen self-organizing maps
    Burn, Kevin
    Home, Geoffrey
    [J]. EXPERT SYSTEMS, 2008, 25 (02) : 98 - 114
  • [3] Identification of lithofacies using Kohonen self-organizing maps
    Chang, HC
    Kopaska-Merkel, DC
    Chen, HC
    [J]. COMPUTERS & GEOSCIENCES, 2002, 28 (02) : 223 - 229
  • [4] AN ANALYSIS OF KOHONEN SELF-ORGANIZING MAPS USING A SYSTEM OF ENERGY FUNCTIONS
    TOLAT, VV
    [J]. BIOLOGICAL CYBERNETICS, 1990, 64 (02) : 155 - 164
  • [5] SPEECH DISORDER ANALYSIS USING MATCHING PURSUIT AND KOHONEN SELF-ORGANIZING MAPS
    Bartu, Marek
    [J]. NEURAL NETWORK WORLD, 2012, 22 (06) : 519 - 533
  • [6] Kohonen's self-organizing maps in contextual analysis of data
    Honkela, T
    Koskinen, I
    Koskenniemi, T
    Karvonen, S
    [J]. INFORMATION ORGANIZATION AND DATABASES: FOUNDATIONS OF DATA ORGANIZATION, 2000, 579 : 135 - 148
  • [7] Star galaxy classification using Kohonen self-organizing maps
    Miller, AS
    Coe, MJ
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1996, 279 (01) : 293 - 300
  • [8] Damage classification in structural health monitoring using principal component analysis and self-organizing maps
    Tibaduiza, D. A.
    Mujica, L. E.
    Rodellar, J.
    [J]. STRUCTURAL CONTROL & HEALTH MONITORING, 2013, 20 (10): : 1303 - 1316
  • [9] Geologic pattern recognition from seismic attributes: Principal component analysis and self-organizing maps
    Roden, Rocky
    Smith, Thomas
    Sacrey, Deborah
    [J]. INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2015, 3 (04): : SAE59 - SAE83
  • [10] Grouping plasma pharmacokinetic profiles using kohonen self-organizing maps
    Boyd, Jason L.
    Fraczkiewicz, Robert
    Fraczkiewicz, Grazyna
    Clark, Robert D.
    Woltosz, Walter S.
    [J]. DRUG METABOLISM REVIEWS, 2011, 43 : 177 - 178