Deep Learning for Automatic Calcium Scoring in CT: Validation Using Multiple Cardiac CT and Chest CT Protocols

被引:156
|
作者
van Velzen, Sanne G. M. [1 ,7 ]
Lessmann, Nikolas [1 ,6 ,10 ]
Velthuis, Birgitta K. [2 ]
Bank, Ingrid E. M. [3 ,11 ]
van den Bongard, Desiree H. J. G. [4 ]
Leiner, Tim [2 ]
de Jong, Pim A. [2 ]
Veldhuis, Wouter B. [2 ]
Correa, Adolfo [12 ]
Terry, James G. [13 ]
Carr, John Jeffrey [13 ]
Viergever, Max A. [1 ]
Verkooijen, Helena M. [5 ]
Isgum, Ivana [1 ,7 ,8 ,9 ]
机构
[1] Univ Med Ctr Utrecht, Image Sci Inst, Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Dept Radiol, Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands
[3] Univ Med Ctr Utrecht, Dept Expt Cardiol, Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands
[4] Univ Med Ctr Utrecht, Dept Radiotherapy, Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands
[5] Univ Med Ctr Utrecht, Imaging Div, Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands
[6] Radboud Univ Nijmegen, Med Ctr, Dept Radiol & Nucl Med, Nijmegen, Netherlands
[7] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Biomed Engn & Phys, Amsterdam, Netherlands
[8] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Radiol & Nucl Med, Amsterdam, Netherlands
[9] Univ Amsterdam, Amsterdam Univ Med Ctr, Amsterdam Cardiovasc Sci, Amsterdam, Netherlands
[10] Radboud Univ Nijmegen, Med Ctr, Dept Radiol & Nucl Med, Nijmegen, Netherlands
[11] Meander Med Ctr, Dept Cardiol, Amersfoort, Netherlands
[12] Univ Mississippi, Med Ctr, Dept Med, Jackson, MS 39216 USA
[13] Vanderbilt Univ, Med Ctr, Dept Radiol & Radiol Sci, Nashville, TN 37232 USA
关键词
CORONARY-ARTERY CALCIUM; CONVOLUTIONAL NEURAL-NETWORKS; COMPUTED-TOMOGRAPHY; CALCIFICATION; MORTALITY; SCANS; ASSOCIATION; DISEASE;
D O I
10.1148/radiol.2020191621
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a range of CT examination types is unknown. Purpose: To evaluate the performance of a DL method for automatic calcium scoring across a wide range of CT examination types and to investigate whether the method can adapt to different types of CT examinations when representative images are added to the existing training data set. Materials and Methods: The study included 7240 participants who underwent various types of nonenhanced CT examinations that included the heart: coronary artery calcium (CAC) scoring CT, diagnostic CT of the chest, PET attenuation correction CT, radiation therapy treatment planning CT, CAC screening CT, and low-dose CT of the chest. CAC and thoracic aorta calcification (TAC)were quantified using a convolutional neural network trained with (a) 1181 low-dose chest CT examinations (baseline), (b) a small set of examinations of the respective type supplemented to the baseline (data specific), and (c) a combination of examinations of all available types (combined). Supplemental training sets contained 199-568 CT images depending on the calcium burden of each population. The DL algorithm performance was evaluated with intraclass correlation coefficients (ICCs) between DL and manual (Agatston) CAC and (volume) TAC scoring and with linearly weighted kappa values for cardiovascular risk categories (Agatston score; cardiovascular disease risk categories: 0, 1-10, 11-100, 101-400, >400). Results: At baseline, the DL algorithm yielded ICCs of 0.79-0.97 for CAC and 0.66-0.98 for TAC across the range of different types of CT examinations. ICCs improved to 0.84-0.99 (CAC) and 0.92-0.99 (TAC) for CT protocol-specific training and to 0.85-0.99 (CAC) and 0.96-0.99 (TAC) for combined training. For assignment of cardiovascular disease risk category, the kappa value for all test CT scans was 0.90 (95% confidence interval [CI]: 0.89, 0.91) for the baseline training. It increased to 0.92 (95% CI:0.91, 0.93) for both data-specific and combined training. Conclusion: A deep learning calcium scoring algorithm for quantification of coronary and thoracic calcium was robust, despite substantial differences in CT protocol and variations in subject population. Augmenting the algorithm training with CT protocol-specific images further improved algorithm performance. (C) RSNA, 2020
引用
收藏
页码:66 / 79
页数:14
相关论文
共 50 条
  • [1] Automatic coronary calcium scoring in chest CT using a deep neural network in direct comparison with non-contrast cardiac CT: A validation study
    van Assen, Marly
    Martin, Simon S.
    Varga-Szemes, Akos
    Rapaka, Saikiran
    Cimen, Serkan
    Sharma, Puneet
    Sahbaee, Pooyan
    De Cecco, Carlo N.
    Vliegenthart, Rozemarjin
    Leonard, Tyler J.
    Burt, Jeremy R.
    Schoepf, U. Joseph
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2021, 134
  • [2] Direct Automatic Coronary Calcium Scoring in Cardiac and Chest CT
    de Vos, Bob D.
    Wolterink, Jelmer M.
    Leiner, Tim
    de Jong, Pim A.
    Lessmann, Nikolas
    Isgum, Ivana
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (09) : 2127 - 2138
  • [3] Automatic coronary artery calcium scoring on routine chest computed tomography (CT): comparison of a deep learning algorithm and a dedicated calcium scoring CT
    Xu, Cheng
    Guo, Heng
    Xu, Minfeng
    Duan, Miao
    Wang, Ming
    Liu, Peijun
    Luo, Xinyi
    Jin, Zhengyu
    Liu, Hui
    Wang, Yining
    [J]. QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, 12 (05) : 2684 - 2695
  • [4] Calcium Scoring at Coronary CT Angiography Using Deep Learning
    Mu, Dan
    Bai, Junjie
    Chen, Wenping
    Yu, Hongming
    Liang, Jing
    Yin, Kejie
    Li, Hui
    Qing, Zhao
    He, Kelei
    Yang, Hao-Yu
    Zhang, Jinyao
    Yin, Youbing
    McLellan, Hunter W.
    Schoepf, U. Joseph
    Zhang, Bing
    [J]. RADIOLOGY, 2022, 302 (02) : 309 - 316
  • [5] Automatic Scan Range Delimitation in Chest CT Using Deep Learning
    Demircioglu, Aydin
    Kim, Moon-Sung
    Stein, Magdalena Charis
    Guberina, Nika
    Umutlu, Lale
    Nassenstein, Kai
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (03)
  • [6] Automatic Calcium Scoring in Low-Dose Chest CT Using Deep Neural Networks With Dilated Convolutions
    Lessmann, Nikolas
    van Ginneken, Bram
    Zreik, Majd
    de Jong, Pim A.
    de Vos, Bob D.
    Viergever, Max A.
    Isgum, Ivana
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (02) : 615 - 625
  • [7] Automatic Coronary Calcium Scoring in Cardiac CT Angiography Using Convolutional Neural Networks
    Wolterink, Jelmer M.
    Leiner, Tim
    Viergever, Max A.
    Isgum, Ivana
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT I, 2015, 9349 : 589 - 596
  • [8] Automatic coronary artery calcium scoring from unenhanced-ECG-gated CT using deep learning
    Nicolas, Gogin
    Viti, Mario
    Nicodeme, Luc
    Ohana, Mickael
    Talbot, Hugues
    Gencer, Umit
    Mekukosokeng, Magloire
    Caramella, Thomas
    Diascorn, Yann
    Airaud, Jean-Yves
    Guillot, Marc-Samir
    Bensalah, Zoubir
    Hieu, Caroline Dam
    Abdallah, Bassam
    Bousaid, Imad
    Lassau, Nathalie
    Mousseaux, Elie
    [J]. DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2021, 102 (11) : 683 - 690
  • [9] Agreement of coronary calcium scoring on chest CT and ECG triggered cardiac CT: a population-based study
    Xia, C.
    Alsurayhi, A.
    Pelgrim, G. J.
    Rook, M.
    Vonder, M.
    Oudkerk, M.
    Vliegenthart, R.
    [J]. EUROPEAN HEART JOURNAL, 2019, 40 : 858 - 858
  • [10] Comparison of Nongated Chest CT and Dedicated Calcium Scoring CT for Coronary Calcium Quantification Using a 256-Dector Row CT Scanner
    Chen, Yuhuan
    Hu, Zhijun
    Li, Michelle
    Jia, Yongjun
    He, Taiping
    Liu, Zhentang
    Wei, Donghong
    Yu, Yong
    [J]. ACADEMIC RADIOLOGY, 2019, 26 (10) : E267 - E274