The esterification of five medium- and long-chain acetylenic alcohols (2-nonyn-1-ol, 10-undecyn-1-ol, 6-octadecyn-1-ol, 9-octadecyn-1-ol, and 13-docosyn-1-ol), seven olefinic alcohols (cis-3-nonen-1-ol, 10-undecen-1-ol, cis-6-octadecen-1-ol, cis-9-octadecen-1-ol, trans-9-octadecen-1-ol, trans-9, trans-11-octadecadien-1-ol, cis-9,cis-12-octadecadien-1-ol), and four short-chain unsaturated alcohols (allyl alcohol, 3-butyn-1-ol, 3-pentyn-1-ol, and cis-2-penten-1-ol) with pentanoic or stearic acid in the presence of various lipase preparations was studied. With the exception of 2-nonyn-1-ol, where Lipase AY-30 (Candida rugosa) was used as the biocatalyst, the esterification of C-11, C-18, and C-22 acetylenic alcohols with pentanoic acid appeared to be generally unaffected by the presence of an acetylenic bond in the alcohol as relatively high yields of the corresponding esters (78-97%) were obtained. However, medium- and long-chain olefinic alcohols were discriminated by Lipase AY-30, Lipolase 100T (Rhizomucor miehei), and especially by porcine pancreatic lipase (PPL), when esterification was conducted with pentanoic acid. Esterification of medium- and long-chain acetylenic or olefinic alcohols with a long-chain fatty acid, stearic acid, was very efficient except when Lipase AY-30 and Lipolase 100T were used. Short-chain unsaturated alcohols were much more readily discriminated. 3-Pentyn-1-ol and 3-butyn-1-ol were difficult (<5% yield) to esterify with pentanoic or stearic acid in the presence of Lipase AY-30 and PPL, respectively. Very low yields (<26%) of esters were produced when 3-butyn-1-ol and 3-pentyn-1-ol were reacted with pentanoic or stearic acid, when catalyzed by lipase from Candida cylindracea. No reaction took place between 3-butyn-1-ol and stearic acids in the presence of Lipase AY-30. Esterification of short-chain acetylenic and olefinic alcohols was most efficiently achieved with Lipolase 100T (Rhizomucor miehei), Lipozyme IM20 (Rh. miehei), or Novozyme 435 (Candida antarctica) as the biocatalyst.