Impedance of an intense plasma-cathode electron source for tokamak startup

被引:8
|
作者
Hinson, E. T. [1 ]
Barr, J. L. [1 ]
Bongard, M. W. [1 ]
Burke, M. G. [1 ]
Fonck, R. J. [1 ]
Perry, J. M. [1 ]
机构
[1] Univ Wisconsin Madison, Dept Engn Phys, Madison, WI 53706 USA
关键词
LOW-ENERGY; PHYSICS;
D O I
10.1063/1.4952628
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An impedance model is formulated and tested for the similar to 1 kV, 1 kA/cm(2), arc-plasma cathode electron source used for local helicity injection tokamak startup. A double layer sheath is established between the high-density arc plasma (n(arc) approximate to 10(21) m(-3)) within the electron source, and the less dense external tokamak edge plasma (n(edge) approximate to 10(18) m(-3)) into which current is injected at the applied injector voltage, V-inj. Experiments on the Pegasus spherical tokamak show that the injected current, I-inj, increases with V-inj according to the standard double layer scaling I-inj similar to V-inj(3/2) at low current and transitions to I-inj similar to V-inj(1/2) at high currents. In this high current regime, sheath expansion and/ or space charge neutralization impose limits on the beam density n(b) similar to I-inj/V-inj(1/2). For low tokamak edge density n(edge) and high I-inj, the inferred beam density nb is consistent with the requirement n(b) <= n(edge) imposed by space-charge neutralization of the beam in the tokamak edge plasma. At sufficient edge density, n(b) similar to n(arc) is observed, consistent with a limit to n(b) imposed by expansion of the double layer sheath. These results suggest that n(arc) is a viable control actuator for the source impedance. Published by AIP Publishing.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A plasma-cathode electron source designed for industrial use
    Osipov, I
    Rempe, N
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (04): : 1638 - 1641
  • [2] PLASMA-CATHODE ELECTRON-GUN
    BAYLESS, JR
    KNECHTLI, RC
    MERCER, GN
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1974, QE10 (02) : 213 - 218
  • [3] PLASMA-CATHODE ELECTRON-GUN
    BAYLESS, JR
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1975, 46 (09): : 1158 - 1160
  • [4] Powerful electron beam transport from a plasma-cathode electron source at forevacuum pressure
    Zenin, A. A.
    Bakeev, I. Yu
    Klimov, A. S.
    Oks, E. M.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2021, 30 (03):
  • [5] A Plasma-Cathode Electron Source for Ribbon-Beam Generation at Forevacuum Pressures
    V. A. Burdovitsin
    Yu. A. Burachevskii
    E. M. Oks
    M. V. Fedorov
    Instruments and Experimental Techniques, 2003, 46 : 257 - 259
  • [6] Hollow Cathode Glow Discharge Initiation in a Fore-Vacuum Plasma-Cathode Electron Source
    Bakeev, Ilya Yu.
    Klimov, Aleksandr S. S.
    Oks, Efim M. M.
    Zenin, Aleksey A. A.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2022, 50 (12) : 4860 - 4864
  • [7] A plasma-cathode electron source for ribbon-beam generation at forevacuum pressures
    Burdovitsin, VA
    Burachevskii, YA
    Oks, EM
    Fedorov, MV
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2003, 46 (02) : 257 - 259
  • [8] Discharge in a long metal tube with an electron beam generated by a forevacuum plasma-cathode electron source
    Burdovitsin, V. A.
    Karpov, K. I.
    Bakeev, I. Yu.
    Oks, E. M.
    PHYSICS OF PLASMAS, 2022, 29 (09)
  • [9] Double-coil magnetic focusing of the electron beam generated by a plasma-cathode electron source
    Bakeev, I. Yu.
    Klimov, A. S.
    Oks, E. M.
    Zenin, A. A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (02):
  • [10] Millisecond Pulsed Arc Discharge in a Forevacuum-Pressure Plasma-Cathode Electron Source
    Medovnik, Alexander V.
    Burdovitsin, Viktor A.
    Kazakov, Andrey V.
    Oks, Efim M.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2017, 45 (08) : 2075 - 2079