Efficient Fault Surface Grouping in 3-D Seismic Fault Data

被引:9
|
作者
Liang, Chenxi [1 ]
Zhang, Gulan [2 ]
Li, Lei [3 ]
Li, Biao [1 ]
Luo, Yiliang [1 ]
Li, Yong [1 ]
Duan, Jing [1 ]
Wu, Xiaoqin [4 ]
机构
[1] Southwest Petr Univ, Sch Geosci & Technol, Chengdu 610500, Peoples R China
[2] Southwest Petr Univ, Sch Geosci & Technol, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Peoples R China
[3] CNPC, Res & Dev Ctr, BGP, Zhuozhou 072751, Peoples R China
[4] Southwest Petr Univ, Sch Comp Sci, Chengdu 610500, Peoples R China
基金
中国国家自然科学基金;
关键词
Labeling; Fault detection; Filtering; Hafnium; Three-dimensional displays; Reservoirs; Data mining; Efficient and high-precision; fault detection; fault labeling; fault separation; fault surface extraction; WAVE-FIELD SEPARATION;
D O I
10.1109/TGRS.2022.3179052
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
High-precision seismic fault detection and fault surface extraction (or grouping) are critical steps in reservoir characterization. In this article, basing on the gradually changing characteristics of the target faults in the adjacent 2-D seismic fault profiles, we propose an efficient and high-precision automatic fault surface grouping (EHFG) method for complex 3-D seismic fault data; and it is realized using pairs of adjacent 2-D seismic fault profiles without human intervention. EHFG comprises of high-precision fault separation (HFS) and high-precision fault labeling (or naming) (HFL), in which HFS aims to separate the positive-slope and negative-slope faults in the seismic fault detection result and ultimately obtain the high-precision positive-slope and negative-slope faults; HFL aims to label the separated positive-slope and negative-slope faults and ultimately obtain the corresponding high-precision fault surface grouping results. An actual 3-D seismic fault data example demonstrates that EHFG is a good potential technique for fault surface grouping.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Fault surface detection in 3-D seismic data
    Gibson, D
    Spann, M
    Turner, J
    Wright, T
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (09): : 2094 - 2102
  • [2] Complex fault system revealed by 3-D seismic reflection data with deep learning and fault network analysis
    Wrona, Thilo
    Pan, Indranil
    Bell, Rebecca E.
    Jackson, Christopher A. -L.
    Gawthorpe, Robert L.
    Fossen, Haakon
    Osagiede, Edoseghe E.
    Brune, Sascha
    [J]. SOLID EARTH, 2023, 14 (11) : 1181 - 1195
  • [3] Deep Learning With Fault Prior for 3-D Seismic Data Super-Resolution
    Zhou, Ruoshui
    Zhou, Cheng
    Wang, Yaojun
    Yao, Xingmiao
    Hu, Guangmin
    Yu, Fucai
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Interactive Fault Extraction in 3-D Seismic Data Using the Hough Transform and Tracking Vectors
    Wang, Zhen
    AlRegib, Ghassan
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2017, 3 (01): : 99 - 109
  • [5] High resolution 3-D seismic experiment across the Oquirrh fault
    Morey, DM
    Wu, CJ
    Wang, Y
    Liu, ZJ
    Chen, J
    Schuster, J
    [J]. SYMPOSIUM ON THE APPLICATION OF GEOPHYSICS TO ENGINEERING AND ENVIRONMENTAL PROBLEMS, VOLS 1 & 2, 1997, : 443 - 452
  • [6] How to constrain 3-D fault continuity and linkage using reflection seismic data: A geomechanical approach
    Maerten, L
    Pollard, DD
    Karpuz, R
    [J]. AAPG BULLETIN, 2000, 84 (09) : 1311 - 1324
  • [7] Fault identification and reliability evaluation using an SVM model based on 3-D seismic data volume
    Ren, Ke
    Zou, Guangui
    Zhang, Shaomin
    Peng, Suping
    Gong, Fei
    Liu, Yanhai
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 234 (01) : 755 - 768
  • [8] Automatic Fault Delineation in 3-D Seismic Images With Deep Learning: Data Augmentation or Ensemble Learning?
    Li, Shizhen
    Liu, Naihao
    Li, Fangyu
    Gao, Jinghuai
    Ding, Jicai
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] 3-D Georadar Images of an Active Fault: Efficient Data Acquisition, Processing and Interpretation Strategies
    Ralf Gross
    Alan Green
    Heinrich Horstmeyer
    Klaus Holliger
    John Baldwin
    [J]. Subsurface Sensing Technologies and Applications, 2003, 4 (1): : 19 - 40
  • [10] Negation Invariant Representations of 3-D Vectors for Deep Learning Models Applied to Fault Geometry Mapping in 3-D Seismic Reflection Data
    Kluvanec, Daniel
    McCaffrey, Kenneth J. W.
    Phillips, Thomas B.
    Al Moubayed, Noura
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61