In the present study, in vivo brain microdialysis coupled with high performance liquid chromatography (HPLC) and electrochemical detection were used to evaluate the effects of either L-arginine (L-Arg), the substrate of nitric oxide synthase (NOS), Nomega-nitro-L-arginine methyl ester hydrochloride (L-NAME), a non-selective NOS inhibitor, or sodium nitroprusside (SNP), a donor of NO, on the ethanol-induced release of ascorbic acid (AA) in the striatum of freely moving mice. Drugs were administered intrastriatally via the microdialysis probe and ethanol (2-4 g/kg) was administered intraperitoneally. The results showed that L-arginine (1-10 mg/ml) had no effect on either the basal AA contents in striatal extracellular fluid or the ethanol-induced release of AA. L-NAME (10(-4) to 10(-3) mg/ml) and SNP (10(-4) to 10(-3) mg/ml) both reduced the basal AA concentrations in striatal extracellular fluid. L-NAME significantly inhibited ethanol-induced release of AA, while SNP only had a transient inhibitory effect on the ethanol-induced release of AA. SNP significantly increased dehydroascorbic acid (DHAA) contents and DHAA/AA ratio but had no effect on the total AA contents (AA and DHAA contents) in striatal extracellular fluid, while L-NAME had no effect on DHAA contents but decreased the total AA contents in striatal extracellular fluid. Only high concentration L-NAME induced a transient increase in DHAA/AA ratio. Our results suggest that nitric oxide (NO) might not directly be involved in the mechanism of ethanol-induced release of AA in mouse striatum. (C) 2003 Elsevier Ireland Ltd. All rights reserved.