3D curve inference for diffusion MRI regularization

被引:0
|
作者
Savadjiev, P [1 ]
Campbell, JSW
Pike, GB
Siddiqi, K
机构
[1] McGill Univ, Montreal, PQ, Canada
[2] Montreal Neurol Inst, Sch Comp Sci, Montreal, PQ, Canada
[3] Montreal Neurol Inst, Ctr Intelligent Machines, Montreal, PQ, Canada
[4] Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop a differential geometric framework for regularizing diffusion MRI data. The key idea is to model white matter fibers as 3D space curves and to then extend Parent and Zucker's 2D curve inference approach [8] by using a notion of co-helicity to indicate compatibility between fibre orientation estimates at each voxel with those in a local neighborhood. We argue that this provides several advantages over earlier regularization methods. We validate the approach quantitatively on a biological phantom and on synthetic data, and qualitatively on data acquired in vivo from a human brain.
引用
收藏
页码:123 / 130
页数:8
相关论文
共 50 条
  • [1] 3D curve inference for diffusion MRI regularization and fibre tractography
    Savadjiev, Peter
    Campbell, Jennifer S. W.
    Pike, G. Bruce
    Siddiqi, Kaleem
    [J]. MEDICAL IMAGE ANALYSIS, 2006, 10 (05) : 799 - 813
  • [2] 3D curve regularization
    Alvarez, Luis
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [3] 3D curve regularization
    Luis Alvarez
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [4] DT-MRI regularization using 3D nonlinear gradient vector flow anisotropic diffusion
    Kim, TS
    Kim, S
    Hwang, D
    Singh, M
    [J]. PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 1880 - 1883
  • [5] 3D Bayesian regularization of diffusion tensor MRI using multivariate Gaussian Markov random fields
    Martín-Fernández, M
    Westin, CF
    Alberola-López, C
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2004, PT 1, PROCEEDINGS, 2004, 3216 : 351 - 359
  • [6] 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization
    Myronenko, Andriy
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 311 - 320
  • [7] 3D CORONARY STRUCTURE TRACKING ALGORITHM WITH REGULARIZATION AND MULTIPLE HYPOTHESES IN MRI
    Velut, Jerome
    Toumoulin, Christine
    Coatrieux, Jean-Louis
    [J]. 2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 37 - 40
  • [8] Regularization of DT-MRI Using 3D Median Filtering Methods
    Kwon, Soondong
    Kim, Dongyoun
    Han, Bongsoo
    Kwon, Kiwoon
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [9] Consistent realignment of 3D diffusion tensor MRI eigenvectors
    Beg, Mirza Faisal
    Dickie, Ryan
    Golds, Gregory
    Younes, Laurent
    [J]. MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [10] 3D modeling and segmentation of diffusion weighted MRI data
    Zhukov, L
    Museth, K
    Breen, D
    Whitaker, R
    [J]. MEDICAL IMAGING 2001: VISUALIZATION, DISPLAY, AND IMAGE-GUIDED PROCEDURES, 2001, 4319 : 401 - 412