Mitochondria-targeted nanoplatforms building for in situ ROS generating photodynamic tumor therapy through reinforcing mitochondria apoptotic pathway

被引:3
|
作者
Wang, Zhiyu [1 ]
Liu, Fengyu [2 ]
Liu, Yuan [3 ]
Huyan, Yucheng [1 ]
Muhammad, Mehdi [1 ]
Xu, Yongqian [1 ]
Li, Hongjuan [1 ]
Sun, Shiguo [1 ,4 ]
机构
[1] Northwest A&F Univ, Coll Chem & Pharm, Shaanxi Key Lab Nat Prod & Chem Biol, Yangling 712100, Shaanxi, Peoples R China
[2] Dalian Univ Technol, Sch Chem, State Key Lab Fine Chem, 2 Linggong Rd, Dalian 116023, Peoples R China
[3] Northwest A&F Univ, Coll Life Sci, Yangling 712100, Shaanxi, Peoples R China
[4] Hebei Univ Sci & Technol, Coll Chem & Pharmaceut Engn, Shijiazhuang 050018, Peoples R China
基金
中国国家自然科学基金;
关键词
Mesoporous silica nanospheres; Mitochondria apoptotic pathway; Photodynamic therapy; Apoptosis inhibitory proteins inhibitors; Photosensitizer; Multimodal cancer treatment; SHOCK-PROTEIN; 90; NANOPARTICLES; INHIBITOR; MECHANISMS;
D O I
10.1016/j.colsurfa.2022.129973
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mitochondria-targeted photodynamic therapy (PDT) represents an attractive therapeutic strategy for antitumor therapy. There is growing evidence indicating that in situ generation of reactive oxygen species (ROS) in mitochondria plays a critical role in significant mitochondrial dysfunction and cell apoptosis. Nevertheless, survivin, a member of the inhibitor of apoptosis protein (IAP) family, is overexpressed by PDT stimulation, which inhibit cysteine aspartic acid specific protease-9 (caspase-9) activation and inhibits apoptosis. The corresponding overexpression of Livin protein in tumor cells can inhibit cysteine aspartic acid specific protease-3 (caspase-3) activity, leading to apoptosis inhibition and promoting tumorigenesis and tumor progression. Thus, a precise combination of mitochondria-targeted photodynamic photosensitizers and IAP inhibitor is expected to significantly augment the PDT efficacy. For proof-of-concept, a therapeutic nanoplatform MSNs/GM/I3C-BSA/ MnO2-IR775 (MGIBR) was ingeniously constructed for synergistic cancer therapy. MGIBR can effectively target mitochondria due to the presence of IR775. Under NIR irradiation, MGIBR can generate in situ (1)O(2 )in mitochondria. Importantly, geldanamycin (GM) and indole-3-carbinol (I3C) can inhibit IAP, synergistic enhance PDT and activate mitochondrial apoptosis pathways, leading to effectively cell death. Such a strategy of MGIBR enabled mitochondrial dysfunction based on in situ generation of ROS in mitochondria and IAP inhibitor synergistically, provides a promising paradigm for highly effective cancer therapeutics.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [1] Mitochondria-targeted nanoplatforms for enhanced photodynamic therapy against hypoxia tumor
    Jiexin Wen
    Yong Luo
    Hui Gao
    Liang Zhang
    Xiang Wang
    Ju Huang
    Tingting Shang
    Di Zhou
    Dong Wang
    Zhigang Wang
    Pan Li
    Zhaoxia Wang
    Journal of Nanobiotechnology, 19
  • [2] Mitochondria-targeted nanoplatforms for enhanced photodynamic therapy against hypoxia tumor
    Wen, Jiexin
    Luo, Yong
    Gao, Hui
    Zhang, Liang
    Wang, Xiang
    Huang, Ju
    Shang, Tingting
    Zhou, Di
    Wang, Dong
    Wang, Zhigang
    Li, Pan
    Wang, Zhaoxia
    JOURNAL OF NANOBIOTECHNOLOGY, 2021, 19 (01)
  • [3] Mitochondria-targeted Janus mesoporous nanoplatform for tumor photodynamic therapy
    Dong, Min
    Tang, Rui
    Li, Jing
    Zhao, Jiajia
    Wang, Yu
    Ouyang, Lin
    Lu, Wei
    Tao, Jun
    Dang, Meng
    Tang, Yuxia
    Teng, Zhaogang
    CHINESE CHEMICAL LETTERS, 2024, 35 (02)
  • [4] Overcoming chemoresistance using tumor mitochondria-targeted photodynamic therapy
    Liu, Yang
    Cui, Jing
    Su, Meng
    Zhang, Dawei
    Bai, Mingfeng
    OPTICAL METHODS FOR TUMOR TREATMENT AND DETECTION: MECHANISMS AND TECHNIQUES IN PHOTODYNAMIC THERAPY XXVIII, 2019, 10860
  • [5] Mitochondria-targeted Janus mesoporous nanoplatform for tumor photodynamic therapy
    Min Dong
    Rui Tang
    Jing Li
    Jiajia Zhao
    Yu Wang
    Lin Ouyang
    Wei Lu
    Jun Tao
    Meng Dang
    Yuxia Tang
    Zhaogang Teng
    Chinese Chemical Letters, 2024, 35 (02) : 572 - 575
  • [6] Tumor mitochondria-targeted photodynamic therapy using TSPO as a molecular target
    Zhang, Shaojuan
    Yang, Ling
    Ling, Xiaoxi
    Shao, Pin
    Ding, Ying
    Bai, Mingfeng
    JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (03)
  • [7] Mitochondria-Targeted Nanoscale MOFs for Improved Photodynamic Therapy
    Gong, Ming
    Yang, Jian
    Zhuang, Qixin
    Li, Yongsheng
    Gu, Jinlou
    CHEMNANOMAT, 2020, 6 (01) : 89 - 98
  • [8] Boosting the photodynamic therapy efficiency with a mitochondria-targeted nanophotosensitizer
    Yang, Limin
    Gao, Peng
    Huang, Yuanlei
    Lu, Xiao
    Chang, Qian
    Pan, Wei
    Li, Na
    Tang, Bo
    CHINESE CHEMICAL LETTERS, 2019, 30 (06) : 1293 - 1296
  • [9] Boosting the photodynamic therapy efficiency with a mitochondria-targeted nanophotosensitizer
    Limin Yang
    Peng Gao
    Yuanlei Huang
    Xiao Lu
    Qian Chang
    Wei Pan
    Na Li
    Bo Tang
    Chinese Chemical Letters, 2019, 30 (06) : 1293 - 1296
  • [10] A mitochondria-targeted zinc(II) phthalocyanine for photodynamic therapy
    Ge, Yanli
    Weng, Xiaocheng
    Tian, Tian
    Ding, Fei
    Huang, Rong
    Yuan, Libo
    Wu, Jun
    Wang, Tianlu
    Guo, Pu
    Zhou, Xiang
    RSC ADVANCES, 2013, 3 (31) : 12839 - 12846