BAYESIAN MULTIVARIATE SPARSE FUNCTIONAL PRINCIPAL COMPONENTS ANALYSIS WITH APPLICATION TO LONGITUDINAL MICROBIOME MULTIOMICS DATA

被引:3
|
作者
Jiang, Lingjing [1 ]
Elrod, Chris [2 ]
Kim, Jane J. [3 ]
Swafford, Austin D. [4 ]
Knight, Rob [5 ]
Thompson, Wesley K. [1 ]
机构
[1] Univ Calif San Diego, Herbert Wertheim Sch Publ Hlth & Human Longev Sci, La Jolla, CA 92093 USA
[2] Julia Comp, Boston, MA USA
[3] Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Ctr Microbiome Innovat, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Dept Pediat, Ctr Microbiome Innovat, Dept Comp Sci & Engn,Dept Bioengn, La Jolla, CA 92093 USA
来源
ANNALS OF APPLIED STATISTICS | 2022年 / 16卷 / 04期
关键词
1; Introduction; Numerous disorders; including heritable immune -mediated diseases; Key words and phrases; Bayesian; functional data analysis; longitudinal; microbiome; multiomics; GUT MICROBIOME; INFECTION; RATES; OMICS;
D O I
10.1214/21-AOAS1587
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Microbiome researchers often need to model the temporal dynamics of multiple complex, nonlinear outcome trajectories simultaneously. This motivates our development of multivariate Sparse Functional Principal Components Analysis (mSFPCA), extending existing SFPCA methods to simultaneously characterize multiple temporal trajectories and their interrelationships. As with existing SFPCA methods, the mSFPCA algorithm characterizes each trajectory as a smooth mean plus a weighted combination of the smooth major modes of variation about the mean, where the weights are given by the component scores for each subject. Unlike existing SFPCA methods, the mSFPCA algorithm allows estimation of multiple trajectories simultaneously, such that the component scores, which are constrained to be independent within a particular outcome for identifiability, may be arbitrarily correlated with component scores for other outcomes. A Cholesky decomposition is used to estimate the component score covariance matrix efficiently and guarantee positive semidefiniteness given these constraints. Mutual information is used to assess the strength of marginal and conditional temporal associations across outcome trajectories. Importantly, we implement mSFPCA as a Bayesian algorithm using R and stan, enabling easy use of packages such as PSIS-LOO for model selection and graphical posterior predictive checks to assess the validity of mSFPCA models. Although we focus on application of mSFPCA to microbiome data in this paper, the mSFPCA model is of general utility and can be used in a wide range of real-world applications.
引用
收藏
页码:2231 / 2249
页数:19
相关论文
共 50 条
  • [1] Robust functional principal components for sparse longitudinal data
    Boente, Graciela
    Salibian-Barrera, Matias
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2021, 79 (02): : 159 - 188
  • [2] Robust functional principal components for sparse longitudinal data
    Graciela Boente
    Matías Salibián-Barrera
    [J]. METRON, 2021, 79 : 159 - 188
  • [3] Principal components for multivariate functional data
    Berrendero, J. R.
    Justel, A.
    Svarc, M.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (09) : 2619 - 2634
  • [4] Bayesian Sparse Multivariate Regression with Asymmetric Nonlocal Priors for Microbiome Data Analysis
    Shuler, Kurtis
    Sison-Mangus, Marilou
    Lee, Juhee
    [J]. BAYESIAN ANALYSIS, 2020, 15 (02): : 559 - 578
  • [5] SPARSE AND FUNCTIONAL PRINCIPAL COMPONENTS ANALYSIS
    Allen, Genevera I.
    Weylandt, Michael
    [J]. 2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, : 11 - 16
  • [6] Sparse multivariate functional principal component analysis
    Song, Jun
    Kim, Kyongwon
    [J]. STAT, 2022, 11 (01):
  • [7] COVARIATE ADJUSTED FUNCTIONAL PRINCIPAL COMPONENTS ANALYSIS FOR LONGITUDINAL DATA
    Jiang, Ci-Ren
    Wang, Jane-Ling
    [J]. ANNALS OF STATISTICS, 2010, 38 (02): : 1194 - 1226
  • [8] Bayesian Estimation of Principal Components for Functional Data
    Suarez, Adam J.
    Ghosal, Subhashis
    [J]. BAYESIAN ANALYSIS, 2017, 12 (02): : 311 - 333
  • [9] BAYESIAN MODELING OF INTERACTION BETWEEN FEATURES IN SPARSE MULTIVARIATE COUNT DATA WITH APPLICATION TO MICROBIOME STUDY
    Zhang, Shuangjie
    Shen, Yuning
    Chen, Irene A.
    Lee, Juhee
    [J]. ANNALS OF APPLIED STATISTICS, 2023, 17 (03): : 1861 - 1883
  • [10] Hierarchical sparse functional principal component analysis for multistage multivariate profile data
    Wang, Kai
    Tsung, Fugee
    [J]. IISE TRANSACTIONS, 2021, 53 (01) : 58 - 73