Asymptotic stability of small bound state of nonlinear quantum walks

被引:2
|
作者
Maeda, Masaya [1 ]
机构
[1] Chiba Univ, Fac Sci, Dept Math & Informat, Chiba 2638522, Japan
关键词
Quantum walks; Bound  states; Symptotic stability; SCHRODINGER-EQUATIONS; DISCRETE SCHRODINGER; STANDING WAVES; OPERATORS; INSTABILITY; SCATTERING; NLS;
D O I
10.1016/j.physd.2022.133408
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the long time behavior of nonlinear quantum walks when the initial data is small in l(2). In particular, we study the case where the linear part of the quantum walk evolution operator has exactly two eigenvalues and show that the solution decomposed into nonlinear bound states bifurcating from the eigenvalues and scattering waves. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] ASYMPTOTIC STABILITY OF SMALL BOUND STATES IN THE DISCRETE NONLINEAR SCHRODINGER EQUATION
    Kevrekidis, P. G.
    Pelinovsky, D. E.
    Stefanov, A.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (05) : 2010 - 2030
  • [2] Nonlinear three-state quantum walks
    Falcao, P. R. N.
    Mendonca, J. P.
    Buraque, A. R. C.
    Dias, W. S.
    Almeida, G. M. A.
    Lyra, M. L.
    [J]. PHYSICAL REVIEW A, 2022, 106 (04)
  • [3] Asymptotic behavior of quantum walks on the line
    Sunada, Toshikazu
    Tate, Tatsuya
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (06) : 2608 - 2645
  • [4] Asymptotic evolution of quantum walks with random coin
    Ahlbrecht, A.
    Vogts, H.
    Werner, A. H.
    Werner, R. F.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
  • [5] STABILITY OF POINT SPECTRUM FOR THREE-STATE QUANTUM WALKS ON A LINE
    Stefanak, Martin
    Bezdekova, Iva
    Jex, Igor
    Barnett, Stephen M.
    [J]. QUANTUM INFORMATION & COMPUTATION, 2014, 14 (13-14) : 1213 - 1226
  • [6] Stability of point spectrum for three-state quantum walks on a line
    Štefaňák, Martin
    Bezděková, Iva
    Jex, Igor
    Barnett, Stephen M.
    [J]. Quantum Information and Computation, 2014, 14 (13-14): : 1213 - 1226
  • [7] Asymptotic stability of small gap solitons in nonlinear Dirac equations
    Pelinovsky, Dmitry E.
    Stefanov, Atanas
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
  • [8] Local asymptotic stability for nonlinear state feedback delay systems
    Germani, A
    Manes, C
    Pepe, P
    [J]. KYBERNETIKA, 2000, 36 (01) : 31 - 42
  • [9] Dynamics of solitons for nonlinear quantum walks
    Maeda, Masaya
    Sasaki, Hironobu
    Segawa, Etsuo
    Suzuki, Akito
    Suzuki, Kanako
    [J]. JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (07):
  • [10] Quantum state revivals in quantum walks on cycles
    Dukes, Phillip R.
    [J]. RESULTS IN PHYSICS, 2014, 4 : 189 - 197