Efficient Z gates for quantum computing

被引:313
|
作者
Mckay, David C. [1 ]
Wood, Christopher J. [1 ]
Sheldon, Sarah [1 ]
Chow, Jerry M. [1 ]
Gambetta, Jay M. [1 ]
机构
[1] IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
CODE;
D O I
10.1103/PhysRevA.96.022330
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For superconducting qubits, microwave pulses drive rotations around the Bloch sphere. The phase of these drives can be used to generate zero-duration arbitrary virtual Z gates, which, combined with two X-pi/2 gates, can generate any SU(2) gate. Here we show how to best utilize these virtual Z gates to both improve algorithms and correct pulse errors. We perform randomized benchmarking using a Clifford set of Hadamard and Z gates and show that the error per Clifford is reduced versus a set consisting of standard finite-durationX and Y gates. Z gates can correct unitary rotation errors for weakly anharmonic qubits as an alternative to pulse-shaping techniques such as derivative removal by adiabatic gate (DRAG). We investigate leakage and show that a combination of DRAG pulse shaping to minimize leakage and Z gates to correct rotation errors realizes a 13.3 ns X-pi/2 gate characterized by low error [1.95(3) x 10(-4)] and low leakage [3.1(6) x 10(-6)]. Ultimately leakage is limited by the finite temperature of the qubit, but this limit is two orders of magnitude smaller than pulse errors due to decoherence.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] From Ansatze to Z-Gates: A NASA View of Quantum Computing
    Rieffel, Eleanor G.
    Hadfield, Stuart
    Hogg, Tad
    Mandra, Salvatore
    Marshall, Jeffrey
    Mossi, Gianni
    O'Gorman, Bryan
    Plamadeala, Eugeniu
    Tubman, Norm M.
    Venturelli, Davide
    Vinci, Walter
    Wang, Zhihui
    Wilson, Max
    Wudarski, Filip
    Biswas, Rupak
    [J]. FUTURE TRENDS OF HPC IN A DISRUPTIVE SCENARIO, 2019, 34 : 133 - 160
  • [2] Quantum dot computing gates
    Chen, Goong
    Diao, Zijian
    Kim, Jong U.
    Neogi, Arup
    Urtekin, Kerim
    Zhang, Zhighang
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (02) : 233 - 296
  • [3] Multibit gates for quantum computing
    Wang, XG
    Sorensen, A
    Molmer, K
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (17) : 3907 - 3910
  • [4] Constructions for quantum computing with symmetrized gates
    Ivanyos, Gabor
    Nagy, Attila B.
    Ronyai, Lajos
    [J]. QUANTUM INFORMATION & COMPUTATION, 2008, 8 (05) : 411 - 429
  • [5] Constructions for quantum computing with symmetrized gates
    Computer and Automation Research Institute, Hungarian Academy of Sciences, Kende u. 13-17, Budapest, H-1111, Hungary
    不详
    [J]. Quantum Inf. Comput., 2008, 5 (0411-0429):
  • [6] Quantum computing with time-travelling quantum gates
    Can, Wang
    Lu, Chao-Yang
    Chen, Ming -Cheng
    [J]. ACTA PHYSICA SINICA, 2024, 73 (02)
  • [7] Efficient quantum computation with probabilistic quantum gates
    Duan, LM
    Raussendorf, R
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (08)
  • [8] Multiqubit logic gates in NMR quantum computing
    Price, MD
    Havel, TF
    Cory, DG
    [J]. NEW JOURNAL OF PHYSICS, 2000, 2 : 101 - 109
  • [9] Quantum Hamiltonian Computing (QHC) Logic Gates
    Kawai, Hiroyo
    Neucheva, Olga
    Dridi, Ghassen
    Saeys, Mark
    Joachim, Christian
    [J]. ON-SURFACE ATOMIC WIRES AND LOGIC GATES, 2017, : 121 - 138
  • [10] Percolation, renormalization, and quantum computing with nondeterministic gates
    Kieling, K.
    Rudolph, T.
    Eisert, J.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (13)