Nearly antipodal chromatic number of even paths

被引:0
|
作者
Shen, Yufa [1 ,2 ]
Guo, Jun [3 ]
Xiao, Xin [1 ]
Tang, Qing [3 ]
机构
[1] Hebei Normal Univ Sci & Technol, Dept Math, Qinhuangdao 066004, Peoples R China
[2] Hebei Normal Univ, Ctr Math Hebei Prov, Shijiazhuang 050016, Peoples R China
[3] Hebei Univ Technol, Inst Appl Math, Tianjin 300401, Peoples R China
关键词
Radio colorings; Nearly antipodal chromatic number; Paths;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For paths P-n, Chartrand, Nebesky and Zhang gave the exact value of ac'(P-n) for n <= 8, and showed that ac'(P-n) <= (n-2 2) + 2 for every positive integer n, where ac'(P-n) denotes the nearly antipodal chromatic number of P-n. In this paper, we determine the exact values of ac'(P-n) for all even integers n >= 8.
引用
收藏
页码:217 / 224
页数:8
相关论文
共 50 条
  • [1] Note on Antipodal (Hamiltonian) Chromatic Number of Paths
    Shen, Yufa
    Chen, Zuoli
    Zhang, Lingmin
    Guo, Jun
    PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2010, 9 : 503 - 506
  • [2] NEARLY ANTIPODAL CHROMATIC NUMBER ac(P-n) OF THE PATH Pn
    Kola, Srinivasa Rao
    Panigrahi, Pratima
    MATHEMATICA BOHEMICA, 2009, 134 (01): : 77 - 86
  • [3] THE MEAN CHROMATIC NUMBER OF PATHS AND CYCLES
    ANTHONY, M
    BIGGS, N
    DISCRETE MATHEMATICS, 1993, 120 (1-3) : 227 - 231
  • [4] Chromatic layout number of paths and cycles
    Quadras, Jasintha
    Vasanthika, S.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 92 : 167 - 174
  • [5] NEARLY BIPARTITE GRAPHS WITH LARGE CHROMATIC NUMBER
    RODL, V
    COMBINATORICA, 1982, 2 (04) : 377 - 383
  • [6] On the Radio k-chromatic Number of Paths
    Niranjan, P. K.
    Kola, Srinivasa Rao
    NOTE DI MATEMATICA, 2022, 42 (01): : 37 - 45
  • [7] Locating Chromatic Number of Powers of Paths and Cycles
    Ghanem, Manal
    Al-Ezeh, Hasan
    Dabbour, Ala'a
    SYMMETRY-BASEL, 2019, 11 (03):
  • [8] On the sigma chromatic number of the join of a finite number of paths and cycles
    Garciano, Agnes D.
    Lagura, Maria Czarina T.
    Marcelo, Reginaldo M.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (02)
  • [9] THE TOTAL CHROMATIC NUMBER OF NEARLY COMPLETE BIPARTITE GRAPHS
    HILTON, AJW
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 52 (01) : 9 - 19
  • [10] Equitable Total Chromatic Number of Krxp for p Even
    da Silva, Anderson G.
    Dantas, Simone
    Sasaki, Diana
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 685 - 697