Critical temperature and density of spin flips in the anisotropic random-field Ising model

被引:4
|
作者
Figge, MT
Mostovoy, MV
Knoester, J
机构
[1] Univ Groningen, Inst Theoret Phys, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Ctr Mat Sci, NL-9747 AG Groningen, Netherlands
[3] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
来源
PHYSICAL REVIEW B | 1998年 / 58卷 / 05期
关键词
D O I
10.1103/PhysRevB.58.2626
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present analytical results for the strongly anisotropic random-field Ising model, consisting of weakly interacting spin chains. We combine the mean-field treatment of interchain interactions with an analytical calculation of the average chain free energy ("chain mean-field'' approach). The free energy is found using a mapping on a Brownian motion model. We calculate the order parameter and give expressions for the critical random magnetic-field strength below which the ground state exhibits long-range order and for the critical temperature as a function of the random magnetic-field strength. In the limit of vanishing interchain interactions, we obtain corrections to the zero-temperature estimate by Imry and hla [Phys. Rev. Lett. 35, 1399 (1975)] of the ground-state density of domain walls (spin flips) in the one-dimensional random-field Ising model. One of the problems to which our model has direct relevance is the lattice dimerization in disordered quasi-one-dimensional Peierls materials, such as the conjugated polymer trans-polyacetylene. [S0163-1829(98)02129-8].
引用
收藏
页码:2626 / 2634
页数:9
相关论文
共 50 条
  • [1] Critical behavior of the random-field Ising model
    Gofman, M
    Adler, J
    Aharony, A
    Harris, AB
    Schwartz, M
    PHYSICAL REVIEW B, 1996, 53 (10): : 6362 - 6384
  • [2] Critical aspects of the random-field Ising model
    Nikolaos G. Fytas
    Panagiotis E. Theodorakis
    Ioannis Georgiou
    Ioannis Lelidis
    The European Physical Journal B, 2013, 86
  • [3] Critical aspects of the random-field Ising model
    Fytas, Nikolaos G.
    Theodorakis, Panagiotis E.
    Georgiou, Ioannis
    Lelidis, Ioannis
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (06):
  • [4] Scaling of the random-field Ising model at zero temperature
    Swift, MR
    Bray, AJ
    Maritan, A
    Cieplak, M
    Banavar, JR
    EUROPHYSICS LETTERS, 1997, 38 (04): : 273 - 278
  • [5] Field history analysis of spin configurations in the random-field Ising model
    Basso, V
    Magni, A
    PHYSICA B-CONDENSED MATTER, 2004, 343 (1-4) : 275 - 280
  • [6] Trimodal random-field distribution of a mixed spin Ising model
    Liang, YQ
    Wei, GZ
    Song, GL
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (08): : 1916 - 1922
  • [7] LOWER CRITICAL DIMENSION OF THE RANDOM-FIELD ISING-MODEL
    IMBRIE, JZ
    PHYSICAL REVIEW LETTERS, 1984, 53 (18) : 1747 - 1750
  • [8] LOWER CRITICAL DIMENSION FOR THE RANDOM-FIELD ISING-MODEL
    BRICMONT, J
    KUPIAINEN, A
    PHYSICAL REVIEW LETTERS, 1987, 59 (16) : 1829 - 1832
  • [9] NONEQUILIBRIUM CRITICAL EXPONENTS IN THE RANDOM-FIELD ISING-MODEL
    VILLAIN, J
    PHYSICAL REVIEW LETTERS, 1984, 52 (17) : 1543 - 1546
  • [10] Exact spin-spin correlation function for the zero-temperature random-field Ising model
    Handford, T. P.
    Perez-Reche, F-J
    Taraskin, S. N.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,