Relativistic jets and long-duration gamma-ray bursts from the birth of magnetars

被引:113
|
作者
Bucciantini, N. [1 ,2 ]
Quataert, E. [1 ,2 ]
Arons, J. [1 ,2 ,3 ,4 ]
Metzger, B. D. [1 ,2 ,3 ]
Thompson, T. A. [5 ]
机构
[1] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA
[5] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
关键词
magnetic fields; MHD; stars : neutron; supernovae : general; stars; winds; outflows; gamma-rays : bursts;
D O I
10.1111/j.1745-3933.2007.00403.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present time-dependent axisymmetric magnetohydrodynamic simulations of the interaction of a relativistic magnetized wind produced by a proto-magnetar with a surrounding stellar envelope, in the first similar to 10 s after core collapse. We inject a super-magnetosonic wind with E = 10(51) erg s(-1) into a cavity created by an outgoing supernova shock. A strong toroidal magnetic field builds up in the bubble of plasma and magnetic field that is at first inertially confined by the progenitor star. This drives a jet out along the polar axis of the star, even though the star and the magnetar wind are each spherically symmetric. The jet has the properties needed to produce a long-duration gamma-ray burst (GRB). At similar to 5 s after core bounce, the jet has escaped the host star and the Lorentz factor of the material in the jet at large radii similar to 10(11) cm is similar to that in the magnetar wind near the source. Most of the spindown power of the central magnetar escapes via the relativistic jet. There are fluctuations in the Lorentz factor and energy flux in the jet on a similar to 0.01-0.1 s time-scale. These may contribute to variability in GRB emission (e.g. via internal shocks).
引用
收藏
页码:L25 / L29
页数:5
相关论文
共 50 条
  • [1] The energy of long-duration gamma-ray bursts
    Piran, T
    Kumar, P
    Panaitescu, A
    Piro, L
    [J]. ASTROPHYSICAL JOURNAL, 2001, 560 (02): : L167 - L169
  • [2] Progenitors of Long-Duration Gamma-ray Bursts
    Roy, Arpita
    [J]. GALAXIES, 2021, 9 (04):
  • [3] Compton tails in long-duration gamma-ray bursts
    Barbiellini, G
    Celotti, A
    Ghirlanda, G
    Longo, F
    Piro, L
    Tavani, M
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 350 (01) : L5 - L8
  • [4] The local environments of long-duration gamma-ray bursts
    Young, Patrick A.
    Fryer, Chris L.
    [J]. ASTROPHYSICAL JOURNAL, 2007, 670 (01): : 584 - 591
  • [5] THE METAL AVERSION OF LONG-DURATION GAMMA-RAY BURSTS
    Graham, J. F.
    Fruchter, A. S.
    [J]. ASTROPHYSICAL JOURNAL, 2013, 774 (02):
  • [6] The Host Galaxies of Long-Duration Gamma-Ray Bursts
    Levesque, Emily M.
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2014, 126 (935) : 1 - 14
  • [7] Measuring ΩM and ΩΛ with long-duration gamma-ray bursts
    Balastegui, A.
    Canal, R.
    Ruiz-Lapuente, P.
    [J]. ASTRONOMISCHE NACHRICHTEN, 2010, 331 (08) : 837 - 842
  • [8] Relativistic jets from collapsars: Gamma-ray bursts
    Zhang, WQ
    Woosley, SE
    [J]. 3D STELLAR EVOLUTION, 2003, 293 : 321 - 328
  • [9] The luminosity and angular distributions of long-duration gamma-ray bursts
    Guetta, D
    Piran, T
    Waxman, E
    [J]. ASTROPHYSICAL JOURNAL, 2005, 619 (01): : 412 - 419
  • [10] Exploring the host environments of long-duration gamma-ray bursts
    Levesque, Emily M.
    [J]. GAMMA RAY BURSTS 2010, 2011, 1358