Ag substituted LaCoO3 perovskites as precursors for the catalytic hydrogenation of levulinic acid

被引:3
|
作者
Seguel, Juan [1 ,2 ]
Cancino, Ximena [1 ,2 ]
Noe Diaz de Leon, J. [3 ]
Delgado, Eduardo J. [1 ,2 ]
Sepulveda, Catherine [1 ,2 ]
Pecchi, Gina [1 ,2 ]
机构
[1] Univ Concepcion, Fac Ciencias Quim, Edmundo Larenas 129, Concepcion, Chile
[2] Millennium Nuclei Catalyt Proc Sustainable Chem C, Santiago, Chile
[3] Univ Nacl Autonoma Mexico, Ctr Nanociencias & Nanotecnol, Ensenada, Baja California, Mexico
关键词
perovskites; precursors; levulinic acid; cobalt; AQUEOUS-PHASE HYDROGENATION; GAMMA-VALEROLACTONE; PARTIAL OXIDATION; CO; METHANE; CONVERSION; NICKEL; COBALT; BIOREFINERIES; CHALLENGES;
D O I
10.1002/jctb.7198
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BACKGROUND Perovskite-type mixed oxides with the formula La1-xAgxCoO3 (xAg = 0.05, 0.10, 0.20) were successfully used as precursors to prepare cobalt nanoparticle catalysts for use in the catalytic hydrogenation of levulinic acid (LA). The calcined, reduced, and post reaction catalysts were characterized by X-ray diffraction, N-2 adsorption isotherms at -196 degrees C, H-2-Temperature programmed reduction, NH3-Temperature programmed desorption, H-2 chemisorption, and X-ray photoelectron spectroscopy. The catalytic performance was evaluated in a batch reactor at 50 bar of H-2 at different temperatures to determine the kinetic parameters. RESULTS An increase in the reducibility of the perovskite and Co3+ species contents was detected upon the silver doping. The highest catalytic activity was observed for the perovskite with xAg = 0.20 and this activity was attributed to the high content of metallic cobalt. CONCLUSION The active site corresponds to surface metallic cobalt and the presence of silver increases the amount of reduced cobalt. The high hydrogenating capacity of metallic cobalt explains the 100% selectivity towards gamma valero lactone of the synthesized catalysts. (c) 2022 Society of Chemical Industry (SCI).
引用
收藏
页码:3385 / 3394
页数:10
相关论文
共 50 条
  • [1] Conversion of levulinic acid over Ag substituted LaCoO3 perovskite
    Seguel, J.
    Leal, E.
    Zarate, X.
    Saavedra-Torres, M.
    Schott, E.
    de Leon, J. N. Diaz
    Blanco, E.
    Escalona, N.
    Pecchi, G.
    Sepulveda, C.
    FUEL, 2021, 301 (301)
  • [2] Effect of Pd or Ag additive on the activity and stability of monolithic LaCoO3 perovskites for catalytic combustion of methane
    Kucharczyk, B
    Tylus, W
    CATALYSIS TODAY, 2004, 90 (1-2) : 121 - 126
  • [3] LaCoO3 Perovskites for CO Sensing
    Daungdaw, Saengdoen
    Prangsri-Aroon, Sanya
    Virayathana, Pinsuda
    Wongchaisuwat, Atchana
    Eamchotchawalit, Chutima
    SENSOR LETTERS, 2013, 11 (03) : 556 - 559
  • [4] Oxygen mobility in LaCoO3 perovskites
    Royer, S
    Duprez, D
    Kaliaguine, S
    CATALYSIS TODAY, 2006, 112 (1-4) : 99 - 102
  • [5] CATALYTIC BEHAVIOR OF LACOO3
    SIS, LB
    WIRTZ, GP
    SORENSON, SC
    AMERICAN CERAMIC SOCIETY BULLETIN, 1973, 52 (04): : 440 - 440
  • [6] HYDROGENOLYSIS AND HYDROGENATION OF ETHYLENE ON LACOO3
    ULLA, MA
    LOMBARDO, EA
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1982, 55 (07) : 2311 - 2312
  • [7] Fabrication of nanofibrous A- or B-sites substituted LaCoO3 perovskites with macroscopic structures and their catalytic applications
    Wu, Qiang
    Zhao, Li
    Wu, Meixia
    Yao, Weifeng
    Qi, Meixue
    Shi, Xiaoyan
    MATERIALS RESEARCH BULLETIN, 2014, 51 : 295 - 301
  • [8] Ferroelasticity and hysteresis in LaCoO3 based perovskites
    Orlovskaya, N
    Gogotsi, Y
    Reece, M
    Cheng, BL
    Gibson, I
    ACTA MATERIALIA, 2002, 50 (04) : 715 - 723
  • [9] Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion
    Spinicci, R
    Faticanti, M
    Marini, P
    De Rossi, S
    Porta, P
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2003, 197 (1-2) : 147 - 155
  • [10] Raman diagnostics of LACOO3 based perovskites
    Orlovskaya, N
    Steinmetz, D
    MIXED IONIC ELECTRONIC CONDUCTING PEROVSKITES FOR ADVANCED ENERGY SYSTEMS, 2004, 173 : 39 - 51