It is shown that in homogeneous aqueous solution containing titanium(III) citrate or titanium(III)-NTA as bulk electron donor, cobalamin, cobinamide, and cobamide are effective electron transfer mediators for the reduction of tetrachloroethene (PCE), trichloroethene (TCE), and trichlorofluoroethene (TCFE). Far a given chlorinated ethene, the reaction rate varied only slightly with pH and type of corrinoid present and was about 5 and 50 times faster for PCE as compared to TCFE and TCE, respectively. Evidence is presented that the first and rate-limiting step of the reduction of PCE, TCE, and TCFE by super-reduced corrinoids is a dissociative one-electron transfer yielding the corresponding vinyl radicals. Furthermore, the elimination of a chloride radical from the 1,1-dichlorovinyl radical yielding chloroacetylene and subsequently acetylene is proposed to account for the direct formation of acetylene out of TCE. Finally, it is demonstrated that at higher reduction potentials the corrinoid mediators may be blocked by the formation of addition products.