Cellulose-based composites for membranes by "in situ" radical polymerization

被引:2
|
作者
Stanciu, Nicoleta Doriana [1 ]
Vuluga, Dumitru Mircea [1 ]
Albu, Ana-Maria [1 ,2 ]
Hantaide, Thierry [3 ]
Teodorescu, Mircea [2 ]
Cioaca, Mihai Bogdan [2 ]
机构
[1] Romanian Acad, Ctr Organ Chem Costin D Nenitescu, Bucharest 060023, Romania
[2] Univ Politehn Bucuresti, Dept Polymer Sci, Bucharest, Romania
[3] Univ Claude Bernard Lyon, Polymer Mat & Biomat Lab, Lyon, France
关键词
acrylic acid; cellulose composite; copolymers; proton exchange membrane;
D O I
10.1080/15421400801903452
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cellulose-containing composites based on copolymers of acrylic acid with styrene, 4-chloro-methyl-styrene and maleic anhydride were prepared for proton conducting membranes. The influence of the substrate on the copolymer composition as well as the copolymer/cellulose ratio on the basic properties of composite materials is discussed using the FT-IR, optical microscopy, SEM, TGA-DSC and conductivity measurements. Moderate water swelling (2-10%) of the synthesized membranes provided volume resistivities, down to 1 x 10(5) Omega . cm, adequate for further processing as proton exchange membrane.
引用
收藏
页码:437 / 451
页数:15
相关论文
共 50 条
  • [1] Cellulose-based magnetoelectric composites
    Yan Zong
    Tian Zheng
    Pedro Martins
    S. Lanceros-Mendez
    Zhilian Yue
    Michael J. Higgins
    [J]. Nature Communications, 8
  • [2] Cellulose-Based Anisotropic Composites
    Borges, J. P.
    Godinho, M. H.
    [J]. ADVANCED MATERIALS FORUM IV, 2008, 587-588 : 604 - 607
  • [3] CELLULOSE-BASED COMPOSITES AND THEIR BIOMEDICAL APPLICATIONS
    Pattnaik, Satyanarayan
    Swain, Kalpana
    [J]. CELLULOSE CHEMISTRY AND TECHNOLOGY, 2022, 56 (1-2): : 115 - 122
  • [4] Preparation and Characterization of Cellulose-Based Nanofiltration Membranes by Interfacial Polymerization with Piperazine and Trimesoyl Chloride
    Li, Shi
    Liu, Shengnan
    Huang, Fang
    Lin, Shan
    Zhang, Hui
    Cao, Shilin
    Chen, Lihui
    He, Zhibin
    Lutes, Ryan
    Yang, Junhui
    Ni, Yonghao
    Huang, Liulian
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (10): : 13168 - 13176
  • [5] Swelling and Viscoelastic Properties of Cellulose-Based Hydrogels Prepared by Free Radical Polymerization of Dimethylaminoethyl Methacrylate in Cellulose Solution
    Blazic, Roko
    Marusic, Katarina
    Vidovic, Elvira
    [J]. GELS, 2023, 9 (02)
  • [6] Cellulose-Based Composite Gas Separation Membranes
    Syrtsova, D. A.
    Teplyakov, V. V.
    Filistovich, V. A.
    Savitskaya, T. A.
    Kimlenka, I. M.
    Makarevich, S. E.
    Grinshpan, D. D.
    [J]. MEMBRANES AND MEMBRANE TECHNOLOGIES, 2019, 1 (06) : 353 - 360
  • [7] Cellulose-Based Composite Gas Separation Membranes
    D. A. Syrtsova
    V. V. Teplyakov
    V. A. Filistovich
    T. A. Savitskaya
    I. M. Kimlenka
    S. E. Makarevich
    D. D. Grinshpan
    [J]. Membranes and Membrane Technologies, 2019, 1 : 353 - 360
  • [8] Research Progress of Cellulose-based Thermoelectric Composites
    Chen L.
    Ma H.
    Lou J.
    Jiang Y.
    Han W.
    [J]. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (04): : 1992 - 2003
  • [9] Advances in Cellulose-Based Composites for Energy Applications
    Teng, Choon Peng
    Tan, Ming Yan
    Toh, Jessica Pei Wen
    Lim, Qi Feng
    Wang, Xiaobai
    Ponsford, Daniel
    Lin, Esther Marie JieRong
    Thitsartarn, Warintorn
    Tee, Si Yin
    [J]. MATERIALS, 2023, 16 (10)
  • [10] Water structure and selective permeation of cellulose-based membranes
    Dias, CR
    de Pinho, MN
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 1999, 80 (2-3) : 117 - 132