Polynomial prediction using incomplete data

被引:8
|
作者
Harju, PT
机构
[1] Laboratory of Telecommunications Technology, Helsinki University of Technology
关键词
D O I
10.1109/78.558500
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We derive an FIR polynomial predictor for data in which some samples are missing. The method is compared with a computationally lighter algorithm that is based on decision-driven recursion. Both schemes are found to perform almost identically well on predicting a sinusoidal signal corrupted by both impulsive and Gaussian noise.
引用
收藏
页码:768 / 770
页数:3
相关论文
共 50 条
  • [1] Robot Execution Failure Prediction Using Incomplete Data
    Twala, Bhekisipho
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2009), VOLS 1-4, 2009, : 1518 - 1523
  • [2] Efficient genetic value prediction using incomplete omics data
    Matthias Westhues
    Claas Heuer
    Georg Thaller
    Rohan Fernando
    Albrecht E. Melchinger
    [J]. Theoretical and Applied Genetics, 2019, 132 : 1211 - 1222
  • [3] Efficient genetic value prediction using incomplete omics data
    Westhues, Matthias
    Heuer, Claas
    Thaller, Georg
    Fernando, Rohan
    Melchinger, Albrecht E.
    [J]. THEORETICAL AND APPLIED GENETICS, 2019, 132 (04) : 1211 - 1222
  • [4] Using incomplete polynomial functions of the odd degree n and their inverses for data encryption and decryption
    Zekaj, Blinera
    Jusufi, Azir
    Imeri-Jusufi, Bukurie
    [J]. IFAC PAPERSONLINE, 2022, 55 (39): : 241 - 246
  • [5] Tree-based prediction on incomplete data using imputation or surrogate decisions
    Valdiviezo, H. Cevallos
    Van Aelst, S.
    [J]. INFORMATION SCIENCES, 2015, 311 : 163 - 181
  • [6] Service Demand Prediction with Incomplete Historical Data
    Ma, Shiheng
    Guo, Song
    Wang, Kun
    Guo, Minyi
    [J]. 2019 39TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2019), 2019, : 912 - 922
  • [8] Crystal structure prediction supported by incomplete experimental data
    Tsujimoto, Naoto
    Adachi, Daiki
    Akashi, Ryosuke
    Todo, Synge
    Tsuneyuki, Shinji
    [J]. PHYSICAL REVIEW MATERIALS, 2018, 2 (05):
  • [9] Partial Convolutional LSTM for Spatiotemporal Prediction of Incomplete Data
    Son, Hyesook
    Jang, Yun
    [J]. IEEE ACCESS, 2020, 8 : 164762 - 164774
  • [10] Incomplete Time Series Prediction Using Max-Margin Classification of Data with Absent Features
    Shang Zhaowei
    Zhang Lingfeng
    Ma Shangjun
    Fang Bin
    Zhang Taiping
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010