Attenuation of the Dynamic Yield Point of Shocked Aluminum Using Elastodynamic Simulations of Dislocation Dynamics

被引:65
|
作者
Gurrutxaga-Lerma, Benat [1 ]
Balint, Daniel S. [1 ]
Dini, Daniele [1 ]
Eakins, Daniel E. [2 ]
Sutton, Adrian P. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
ELASTIC PRECURSOR DECAY; MOVING DISLOCATIONS; SINGLE-CRYSTAL; PLASTICITY; COMPRESSION; NUCLEATION; STRENGTH; ALLOYS; METALS; COPPER;
D O I
10.1103/PhysRevLett.114.174301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When a metal is subjected to extremely rapid compression, a shock wave is launched that generates dislocations as it propagates. The shock wave evolves into a characteristic two-wave structure, with an elastic wave preceding a plastic front. It has been known for more than six decades that the amplitude of the elastic wave decays the farther it travels into the metal: this is known as "the decay of the elastic precursor." The amplitude of the elastic precursor is a dynamic yield point because it marks the transition from elastic to plastic behavior. In this Letter we provide a full explanation of this attenuation using the first method of dislocation dynamics to treat the time dependence of the elastic fields of dislocations explicitly. We show that the decay of the elastic precursor is a result of the interference of the elastic shock wave with elastic waves emanating from dislocations nucleated in the shock front. Our simulations reproduce quantitatively recent experiments on the decay of the elastic precursor in aluminum and its dependence on strain rate.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Simulations of dislocation dynamics in aluminum interconnects
    Nicola, L
    Van der Giessen, E
    Needleman, A
    [J]. MODELING AND NUMERICAL SIMULATION OF MATERIALS BEHAVIOR AND EVOLUTION, 2002, 731 : 41 - 46
  • [2] The three-dimensional elastodynamic solution for dislocation plasticity and its implementation in discrete dislocation dynamics simulations
    Yang, Junjie
    Rida, Ali
    Gu, Yejun
    Magagnosc, Daniel
    Zaki, Tamer A.
    El-Awady, Jaafar A.
    [J]. ACTA MATERIALIA, 2023, 253
  • [3] MOLECULAR DYNAMICS SIMULATION OF DISLOCATION EMISSION FROM SHOCKED ALUMINUM GRAIN BOUNDARIES
    Pozzi, C.
    Germann, T. C.
    Hoagland, R. G.
    [J]. SHOCK COMPRESSION OF CONDENSED MATTER - 2009, PTS 1 AND 2, 2009, 1195 : 765 - +
  • [4] Elastic anisotropy of shocked aluminum single crystals: Use of molecular dynamics simulations
    Zimmerman, J. A.
    Winey, J. M.
    Gupta, Y. M.
    [J]. PHYSICAL REVIEW B, 2011, 83 (18)
  • [5] Interaction of dislocation with GP zones or θ" phase precipitates in aluminum: Atomistic simulations and dislocation dynamics
    Krasnikov, V. S.
    Mayer, A. E.
    Pogorelko, V. V.
    Latypov, F. T.
    Ebel, A. A.
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2020, 125 : 169 - 190
  • [6] A CALCULATION OF THE YIELD STRESS USING THE METHODS OF DISLOCATION DYNAMICS
    ALDEN, TH
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1989, 111 : 107 - 114
  • [7] An Investigation of Spiral Dislocation Sources Using Discrete Dislocation Dynamics (DDD) Simulations
    Li, Luo
    Khraishi, Tariq
    [J]. METALS, 2023, 13 (08)
  • [8] Atomistic simulations of the motion of an edge dislocation in aluminum using the embedded atom method
    Bhate, N
    Clifton, RJ
    Phillips, R
    [J]. SHOCK COMPRESSION OF CONDENSED MATTER-2001, PTS 1 AND 2, PROCEEDINGS, 2002, 620 : 339 - 342
  • [9] Abnormal stress drop at the yield point of aluminum nanowires: A molecular dynamics study
    Pastor-Abia, L.
    Caturla, M. J.
    SanFabian, E.
    Chiappe, G.
    Louis, E.
    [J]. PHYSICAL REVIEW B, 2011, 83 (16)
  • [10] Ejecta From Shocked Metals: Comparative Simulations Using Molecular Dynamics and Smoothed Particle Hydrodynamics
    Dyachkov, Sergey
    Parshikov, Anatoly
    Zhakhovsky, Vasily
    [J]. SHOCK COMPRESSION OF CONDENSED MATTER - 2015, 2017, 1793