A multi-layer approach for camera-based complex map image retrieval and spotting system

被引:0
|
作者
Dang, Q. B. [1 ]
Luqman, M. M. [1 ]
Coustaty, M. [1 ]
Nayef, N. [1 ]
Tran, C. D. [2 ]
Ogier, J. M. [1 ]
机构
[1] Univ La Rochelle, Lab L3i, La Rochelle, France
[2] Can Tho Univ, Coll Informat & Commun Technol, Can Tho, Vietnam
关键词
Camera-based document image retrieval; indexing; text/graphic separation; feature extraction; LLAH; SIFT; PCA; complex map images;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present a method of camera-based document image retrieval for heterogeneous-content documents using different types of features from different layers of information. We use two kinds of features in this paper (Locally Likely Arrangement Hashing - LLAH - and SIFT reduced dimensions using PCA). Then, a single hash table method is used for indexing these multiple kinds of feature vectors. In addition, we employ a technique for reducing the memory required for indexing the key points in hash table. Experimental results show that the multi-layer hashing gives a high accuracy and outperforms classical methods on single layer.
引用
收藏
页码:253 / 258
页数:6
相关论文
共 50 条
  • [1] Camera-based document image spotting system for complex linguistic maps
    Quoc Bao Dang
    Coustaty, Mickael
    Luqman, Muhammad Muzzamil
    Gally, Silvia
    Davoine, Paule-Annick
    Ogier, Jean-Marc
    Burie, Jean-Christophe
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 3246 - 3251
  • [2] A comparison of local features for camera-based document image retrieval and spotting
    Quoc Bao Dang
    Mickaël Coustaty
    Muhammad Muzzamil Luqman
    Jean-Marc Ogier
    [J]. International Journal on Document Analysis and Recognition (IJDAR), 2019, 22 : 247 - 263
  • [3] A comparison of local features for camera-based document image retrieval and spotting
    Quoc Bao Dang
    Coustaty, Mickael
    Luqman, Muhammad Muzzamil
    Ogier, Jean-Marc
    [J]. INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2019, 22 (03) : 247 - 263
  • [4] ToothPic: Camera-Based Image Retrieval on Large Scales
    Valsesia, Diego
    Coluccia, Giulio
    Bianchi, Tiziano
    Magli, Enrico
    [J]. IEEE MULTIMEDIA, 2019, 26 (02) : 33 - 43
  • [5] Medical Image Retrieval Based on Multi-Layer Resampling Template
    WANG Xin-rui
    YANG Yun-feng
    [J]. CADDM, 2014, (04) : 69 - 73
  • [6] Delaunay triangulation-based features for camera-based document image retrieval system
    Dang, Q. B.
    Rusinol, M.
    Coustaty, M.
    Luqman, M. M.
    Tran, C. D.
    Ogier, J-M.
    [J]. PROCEEDINGS OF 12TH IAPR WORKSHOP ON DOCUMENT ANALYSIS SYSTEMS, (DAS 2016), 2016, : 1 - 6
  • [7] A randomized hierarchical trees indexing approach for camera-based information spotting
    Dang, Q. B.
    Coustaty, M.
    Luqman, M. M.
    Ogier, J. M.
    Tran, C. D.
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3692 - 3697
  • [8] A Fast Image Retrieval Method Based on Multi-Layer CNN Features
    Wang Z.
    Zhang H.
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (08): : 1410 - 1416
  • [9] Multi-layer Case-based Reasoning Approach of Complex Product System
    Guo, Sihai
    Zhou, Wenfeng
    Li, Kaizhi
    [J]. PROCEEDINGS OF THE 2012 THIRD WORLD CONGRESS ON SOFTWARE ENGINEERING (WCSE 2012), 2012, : 107 - 110
  • [10] Multi-layer Filtering Approach for Map Images
    Chen, Minjie
    Xu, Mantao
    Fraenti, Pasi
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 3953 - 3956