Perturbation calculation of the uniform electron gas with a transcorrelated Hamiltonian

被引:4
|
作者
Luo, Hongjun [1 ]
Alavi, Ali [1 ,2 ]
机构
[1] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
[2] Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England
来源
JOURNAL OF CHEMICAL PHYSICS | 2022年 / 157卷 / 07期
关键词
QUANTUM MONTE-CARLO; WAVE-FUNCTIONS; COLLECTIVE DESCRIPTION; GROUND-STATE; ENERGIES; LIH;
D O I
10.1063/5.0101776
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With a transcorrelated Hamiltonian, we perform a many body perturbation calculation on the uniform electron gas in the high density regime. By using a correlation factor optimized for a single determinant Jastrow ansatz, the second order correlation energy is calculated as 1-ln2/pi 2ln(r(s))-0.05075. This already reproduces the exact logarithmic term of the random phase approximation (RPA) result, while the constant term is roughly 7% larger than the RPA one. The close agreement with the RPA method demonstrates that the transcorrelated method offers a viable and potentially efficient method for treating metallic systems. (C) 2022 Author(s).
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Quantum Simulation of Molecular Electronic States with a Transcorrelated Hamiltonian: Higher Accuracy with Fewer Qubits
    Kumar, Ashutosh
    Asthana, Ayush
    Masteran, Conner
    Vleev, Edward F.
    Zhang, Yu
    Cincio, Lukasz
    Tretiak, Sergei
    Dub, Pavel A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (09) : 5312 - 5324
  • [42] PERTURBATION-THEORETIC TREATMENT OF INHOMOGENEOUS ELECTRON GAS
    DWORIN, L
    PHYSICAL REVIEW, 1969, 177 (02): : 726 - &
  • [43] Transcorrelated method for electronic systems coupled with variational Monte Carlo calculation
    Umezawa, N
    Tsuneyuki, S
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (19): : 10015 - 10031
  • [44] Transcorrelated Method: Another Possible Way towards Electronic Structure Calculation of Solids
    Tsuneyuki, Shinji
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2008, (176): : 134 - 142
  • [45] Calculation of the effective moduli of a random packing of spheres using a perturbation of the uniform strain approximation
    Paine, AC
    POWDERS & GRAINS 97, 1997, : 291 - 294
  • [46] A perturbation of a periodic Hamiltonian system
    Spradlin, GS
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 38 (08) : 1003 - 1022
  • [47] PERTURBATION EXPANSION FOR ANDERSON HAMILTONIAN
    YOSIDA, K
    YAMADA, K
    SUPPLEMENT OF THE PROGRESS OF THEORETICAL PHYSICS, 1970, (46): : 244 - +
  • [48] PERTURBATION TECHNIQUE FOR ANDERSON HAMILTONIAN
    KEITER, H
    KIMBALL, JC
    PHYSICAL REVIEW LETTERS, 1970, 25 (10) : 672 - &
  • [49] Hamiltonian cosmological perturbation theory
    Barbashov, BM
    Pervushin, VN
    Zakharov, AF
    Zinchuk, VA
    PHYSICS LETTERS B, 2006, 633 (4-5) : 458 - 462
  • [50] Perturbation of a periodic Hamiltonian system
    Department of Mathematical Sciences, United States Military Academy, West Point, NY 10996, United States
    Nonlinear Anal Theory Methods Appl, 8 (1003-1022):