Adaptive Sampling for Structure-Preserving Model Order Reduction of Port-Hamiltonian Systems

被引:8
|
作者
Schwerdtner, Paul [1 ]
Voigt, Matthias [2 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[2] UniDistance Suisse, Uberlandstr 12, CH-3900 Brig, Switzerland
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 19期
关键词
model reduction; H-infinity optimization; structured systems; port-Hamiltonian systems; structure-preserving methods;
D O I
10.1016/j.ifacol.2021.11.069
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an adaptive sampling strategy for the optimization-based structure-preserving model order reduction (MOR) algorithm developed in [Schwerdtner, P. and Voigt, M. (2020). Structure-preserving model order reduction by parameter optimization, Preprint arXiv:2011.07567]. This strategy reduces the computational demand and the required a priori knowledge about the given full-order model, while at the same time retaining a high accuracy compared to other structure-preserving but also unstructured MOR algorithms. A numerical study with a port-Hamiltonian benchmark system demonstrates the effectiveness of our method when combined with this new adaptive sampling strategy. We also investigate the distribution of the sample points. Copyright (C) 2021 The Authors.
引用
收藏
页码:143 / 148
页数:6
相关论文
共 50 条
  • [1] STRUCTURE-PRESERVING MODEL REDUCTION FOR NONLINEAR PORT-HAMILTONIAN SYSTEMS
    Chaturantabut, S.
    Beattie, C.
    Gugercin, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : B837 - B865
  • [2] Structure-preserving model reduction for nonlinear port-Hamiltonian systems
    Beattie, Christopher
    Gugercin, Serkan
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 6564 - 6569
  • [3] Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems
    Gugercin, Serkan
    Polyuga, Rostyslav V.
    Beattie, Christopher
    van der Schaft, Arjan
    AUTOMATICA, 2012, 48 (09) : 1963 - 1974
  • [4] Structure-preserving model reduction of port-Hamiltonian systems based on projection
    Huang, Yao
    Jiang, Yao-Lin
    Xu, Kang-Li
    ASIAN JOURNAL OF CONTROL, 2021, 23 (04) : 1782 - 1791
  • [5] Structure-preserving discretization for port-Hamiltonian descriptor systems
    Mehrmann, Volker
    Morandin, Riccardo
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6863 - 6868
  • [6] On parametric structure preserving model order reduction of linear port-Hamiltonian systems
    Scheuermann, Tobias M.
    Kotyczka, Paul
    Lohmann, Boris
    AT-AUTOMATISIERUNGSTECHNIK, 2019, 67 (07) : 521 - 525
  • [7] Structure-preserving H?, control for port-Hamiltonian systems
    Breiten, Tobias
    Karsai, Attila
    SYSTEMS & CONTROL LETTERS, 2023, 174
  • [8] Structure-preserving model reduction for port-Hamiltonian systems based on separable nonlinear approximation ansatzes
    Schulze, Philipp
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [9] Port-Hamiltonian fluid-structure interaction modelling and structure-preserving model order reduction of a classical guitar
    Rettberg, Johannes
    Wittwar, Dominik
    Buchfink, Patrick
    Brauchler, Alexander
    Ziegler, Pascal
    Fehr, Joerg
    Haasdonk, Bernard
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2023, 29 (01) : 116 - 148
  • [10] Rank-adaptive structure-preserving model order reduction of Hamiltonian systems
    Hesthaven, Jan S.
    Pagliantini, Cecilia
    Ripamonti, Nicolo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (02) : 617 - 650