TOPOLOGICAL CONJUGACY OF TOPOLOGICAL MARKOV SHIFTS AND CUNTZ-KRIEGER ALGEBRAS

被引:0
|
作者
Matsumoto, Kengo [1 ]
机构
[1] Joetsu Univ Educ, Dept Math, Joetsu 9438512, Japan
来源
DOCUMENTA MATHEMATICA | 2017年 / 22卷
关键词
Topological Markov shifts; topological conjugacy; strong shift equivalence; Cuntz-Krieger algebras; K-theory; gauge action; CONTINUOUS ORBIT EQUIVALENCE; MORITA EQUIVALENCE; STABLE ISOMORPHISM; FLOW EQUIVALENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an irreducible non-permutation matrix A, the triplet (O-A, D-A, rho(A)) for the Cuntz-Krieger algebra O-A, its canonical maximal abelian C*-subalgebra D-A, and its gauge action rho(A) is called the Cuntz-Krieger triplet. We introduce a notion of strong Morita equivalence in the Cuntz-Krieger triplets, and prove that two Cuntz-Krieger triplets (O-A, D-A, rho(A)) and (O-B, D-B, rho(B)) are strong Morita equivalent if and only if A and B are strong shift equivalent. We also show that the generalized gauge actions on the stabilized Cuntz-Krieger algebras are cocycle conjugate if the underlying matrices are strong shift equivalent. By clarifying K-theoretic behavior of the cocycle conjugacy, we investigate a relationship between cocycle conjugacy of the gauge actions on the stabilized Cuntz-Krieger algebras and topological conjugacy of the underlying topological Markov shifts.
引用
收藏
页码:873 / 915
页数:43
相关论文
共 50 条