Edge capillary-gravity waves on a sloping beach

被引:3
|
作者
Muzylev, SV [1 ]
Bulgakov, SN
Duran-Matute, M
机构
[1] PP Shirshov Oceanol Inst, Moscow, Russia
[2] Univ Guadalajara, Inst Astron & Meteorol, Dept Phys, Guadalajara, Spain
关键词
D O I
10.1063/1.1879052
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It is shown how the solution for velocity potential may be determined when the effect of surface tension is included in the linearized theory of Ursell-type edge waves over a plane-sloping beach. The problem is examined without making a hydrostatic assumption. Explicit solutions for edge capillary-gravity waves are given and the dispersion equation is obtained. The influence of capillarity on gravity waves is discussed. (C) 2005 American Institute of Physics.
引用
收藏
页码:048103 / 1
页数:4
相关论文
共 50 条
  • [1] CAPILLARY-GRAVITY WAVES OVER A SLOPING BEACH
    ALLWOOD, DA
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1973, 74 (NOV): : 539 - 547
  • [2] Bounded capillary-gravity waves obliquely incident on a plane beach
    Williams, PS
    Ehrenmark, UT
    Body, GL
    [J]. WAVE MOTION, 2004, 39 (02) : 143 - 167
  • [3] Nonlinear capillary-gravity waves under an edge condition
    Chang, CC
    Shen, MC
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2000, 38 (04) : 391 - 402
  • [4] Nonlinear capillary-gravity waves under an edge condition
    C.C. Chang
    M.C. Shen
    [J]. Journal of Engineering Mathematics, 2000, 38 : 391 - 402
  • [5] EDGE WAVES ON A SLOPING BEACH
    URSELL, F
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1952, 214 (1116): : 79 - 97
  • [6] Nonlinear gravity and capillary-gravity waves
    Dias, Frédéric
    Kharif, Christian
    [J]. Annual Review of Fluid Mechanics, 1999, 31 : 301 - 346
  • [7] Nonlinear gravity and capillary-gravity waves
    Dias, F
    Kharif, C
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 1999, 31 : 301 - 346
  • [8] REFLECTION OF CAPILLARY-GRAVITY WAVES
    HOCKING, LM
    [J]. WAVE MOTION, 1987, 9 (03) : 217 - 226
  • [9] Edge waves on a gently sloping beach
    [J]. Miles, John, 1600, (199):
  • [10] EDGE WAVES ON A GENTLY SLOPING BEACH
    MILES, J
    [J]. JOURNAL OF FLUID MECHANICS, 1989, 199 : 125 - 131