Classification via information-theoretic fusion of vector-magnetic and acoustic sensor data

被引:0
|
作者
Kozick, Richard J. [1 ]
Sader, Brian M. [2 ]
机构
[1] Bucknell Univ, Lewisburg, PA 17837 USA
[2] Arrmy Res Lab, Adelphi, MD 20783 USA
关键词
sensor network; classification; sensor fusion; mutual information;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We present a general approach for multi-modal sensor fusion based on nonparametric probability density estimation and maximization of a mutual information criterion. We apply this approach to fusion of vector-rnagnetic and acoustic data for classification of vehicles. Linear features are used, although the approach may be applied more generally with other sensor modalities, nonlinear features, and other classification targets. For the magnetic data, we present a parametric model with computationally efficient parameter estimation. Experimental results are provided illustrating the effectiveness of a classifier that discriminates between cars and sport utility vehicles.
引用
收藏
页码:953 / +
页数:2
相关论文
共 50 条
  • [1] Joint processing of vector-magnetic and acoustic sensor data
    Kozick, Richard J.
    Sadler, Brian M.
    [J]. UNATTENDED GROUND, SEA, AND AIR SENSOR TECHNOLOGIES AND APPLICATIONS IX, 2007, 6562
  • [2] Information-theoretic feature selection for functional data classification
    Gomez-Verdejo, Vanessa
    Verleysen, Michel
    Fleury, Jerome
    [J]. NEUROCOMPUTING, 2009, 72 (16-18) : 3580 - 3589
  • [3] Unsupervised classification via decision trees: An information-theoretic perspective
    Karakos, D
    Khudanpur, S
    Eisner, J
    Priebe, CE
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 1081 - 1084
  • [4] An Information-Theoretic Characterization of Morphological Fusion
    Rathi, Neil
    Hahn, Michael
    Futrell, Richard
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 10115 - 10120
  • [5] Multitarget tracking in sensor networks via efficient information-theoretic sensor selection
    Wang, Ping
    Ma, Liang
    Xue, Kai
    [J]. INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2017, 14 (05):
  • [6] Information-theoretic feature selection for classification
    Joshi, Alok A.
    James, Scott M.
    Meckl, Peter H.
    King, Galen B.
    Jennings, Kristofer
    [J]. 2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 787 - +
  • [7] Information-Theoretic Performance Analysis of Sensor Networks via Markov Modeling of Time Series Data
    Li, Yue
    Jha, Devesh K.
    Ray, Asok
    Wettergren, Thomas A.
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (06) : 1898 - 1909
  • [8] Information-Theoretic method for classification of texts
    B. Ya. Ryabko
    A. E. Gus’kov
    I. V. Selivanova
    [J]. Problems of Information Transmission, 2017, 53 : 294 - 304
  • [9] Information-Theoretic Method for Classification of Texts
    Ryabko, B. Ya.
    Gus'kov, A. E.
    Selivanova, I. V.
    [J]. PROBLEMS OF INFORMATION TRANSMISSION, 2017, 53 (03) : 294 - 304
  • [10] Information-theoretic assessment of imaging systems via data compression
    Aiazzi, B
    Alparone, L
    Baronti, S
    [J]. MATHEMATICS OF DATA/IMAGE CODING, COMPRESSION, AND ENCRYPTION IV, WITH APPLICATIONS, 2001, 4475 : 55 - 66