共 1 条
Energy transfer from phycobilisomes to photosystems of Nostoc flagelliforme Born. et Flah. during the rewetting course and its physiological significance
被引:7
|作者:
Huang, H
[1
]
Bai, KZ
[1
]
Zhong, ZP
[1
]
Li, LB
[1
]
Kuang, TY
[1
]
机构:
[1] Chinese Acad Sci, Inst Bot, Key Lab Photosynth & Environm Mol Physiol, Beijing 100093, Peoples R China
关键词:
dark;
energy transfer;
Nostoc flagelliforme;
photosystem II;
phycobilisome;
rewetting;
D O I:
10.1111/j.1744-7909.2005.00105.x
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
During the non-frost season, the condensation of dew makes Nostoc flagelliforme Born. et Flah., a highly drought-tolerant terrestrial cyanobacterium, frequently undergo rehydration-dehydration. Rehydration begins in the dark at night. After rewetting in the dark, photochemical activity and the structure of photosystem ( PS) II were not recovered at all; the structure of PSI, energy transfer in phycobilisomes, and energy transfer from phycobilisomes to PSI were recovered within 5 min, as in the light. The recovery of energy transfer from phycobilisomes to PSII was light dependent and energy transfer from phycobilisomes to PSII was only partially recovered in the dark. These results suggest that the two-trigger control ( water and light) of photosynthetic recovery may make N. flagelliforme avoid unnecessary energy consumption and, at the same time, the partial recovery of energy transfer from phycobilisomes to PSII in the dark could help N. flagelliforme accumulate more photosynthetic products during the transient period of rehydration-dehydration.
引用
收藏
页码:703 / 708
页数:6
相关论文