Correlation functions of one-dimensional Lieb-Liniger anyons

被引:56
|
作者
Patu, Ovidiu I. [1 ,3 ]
Korepin, Vladimir E. [1 ]
Averin, Dmitri V. [2 ]
机构
[1] SUNY Stony Brook, Cn Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[3] Inst Space Sci MG 23, Bucharest 077125, Romania
基金
美国国家科学基金会;
关键词
D O I
10.1088/1751-8113/40/50/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have investigated the properties of a model of 1D anyons interacting through a delta-function repulsive potential. The structure of the quasi-periodic boundary conditions for the anyonic field operators and the many-anyon wavefunctions is clarified. The spectrum of the low-lying excitations including the particle - hole excitations is calculated for periodic and twisted boundary conditions. Using the ideas of the conformal field theory we obtain the large-distance asymptotics of the density and field correlation function at the critical temperature T=0 and at small finite temperatures. Our expression for the field correlation function extends the results in the literature obtained for harmonic quantum anyonic fluids.
引用
收藏
页码:14963 / 14984
页数:22
相关论文
共 50 条
  • [1] Correlation functions of a Lieb-Liniger Bose gas
    Astrakharchik, G. E.
    Giorgini, S.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2006, 39 (10) : S1 - S12
  • [2] Finite-temperature correlations in the Lieb-Liniger one-dimensional Bose gas
    Panfil, Milosz
    Caux, Jean-Sebastien
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [3] Short-distance correlation properties of the Lieb-Liniger system and momentum distributions of trapped one-dimensional atomic gases
    Olshanii, M
    Dunjko, V
    PHYSICAL REVIEW LETTERS, 2003, 91 (09)
  • [4] One-dimensional Lieb-Liniger Bose gas as nonrelativistic limit of the sinh-Gordon model
    Kormos, M.
    Mussardo, G.
    Trombettoni, A.
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [5] Second quantization of Leinaas-Myrheim anyons in one dimension and their relation to the Lieb-Liniger model
    Posske, Thore
    Trauzettel, Bjoern
    Thorwart, Michael
    PHYSICAL REVIEW B, 2017, 96 (19)
  • [6] Exact prefactors in static and dynamic correlation functions of one-dimensional quantum integrable models: Applications to the Calogero-Sutherland, Lieb-Liniger, and XXZ models
    Shashi, Aditya
    Panfil, Milosz
    Caux, Jean-Sebastien
    Imambekov, Adilet
    PHYSICAL REVIEW B, 2012, 85 (15):
  • [7] Dynamics of Lieb-Liniger gases
    Girardeau, MD
    PHYSICAL REVIEW LETTERS, 2003, 91 (04)
  • [8] Solutions of the Lieb-Liniger integral equation
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (11) : 2657 - 2662
  • [9] A generalized Lieb-Liniger model
    Veksler, Hagar
    Fishman, Shmuel
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (08)
  • [10] Free expansion of a Lieb-Liniger gas: Asymptotic form of the wave functions
    Jukic, D.
    Pezer, R.
    Gasenzer, T.
    Buljan, H.
    PHYSICAL REVIEW A, 2008, 78 (05):