Corrosion of steel alloys in eutectic NaCl + Na2CO3 at 700 οC and Li2CO3 + K2CO3 + Na2CO3 at 450 οC for thermal energy storage

被引:51
|
作者
Sarvghad, Madjid [1 ]
Steinberg, Theodore A. [1 ]
Will, Geoffrey [1 ]
机构
[1] Queensland Univ Technol, Sci & Engn Fac, Brisbane, Qld 4001, Australia
关键词
Steel; Molten Salt; Corrosion; Impedance spectroscopy; Polarization; Microscopy; HIGH-TEMPERATURE CORROSION; THERMAL-ENERGY STORAGE; STAINLESS-STEEL; ELECTROCHEMICAL REDUCTION; MOLTEN; BEHAVIOR; COATINGS; CHLORIDE; DIOXIDE; MECHANISM;
D O I
10.1016/j.solmat.2017.05.063
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Stainless steel 316, duplex steel 2205 and carbon steel 1008 were examined for compatibility with the eutectic mixtures of NaCl+Na2CO3 at 700 C-omicron and Li2CO3 + K2CO3 + Na2CO3 at 450 C-omicron in air for thermal energy storage. Electrochemical measurements combined with advanced microscopy and microanalysis techniques were employed. Oxidation was found as the primary attack in both molten salt environments. However, the availability of O-2 controlled the degree of oxidation. Alloy 316 showed the lowest corrosion current densities in each molten salt owing to the formation of films on the surface. The attack morphology on the surface of all materials was uniform corrosion with no localized degradation at 450 C-omicron. Microscopy observations showed grain boundary oxidative attack as the primary corrosion mechanism for all studied alloys at 700 C-omicron with depletion of alloying elements from grain boundaries in alloys 316 and 2205. The protective nature of austenite phase reduced selective oxidation of the underlying ferrite layers of alloy 2205 in chloride carbonate at 700 C-omicron.
引用
下载
收藏
页码:48 / 59
页数:12
相关论文
共 50 条
  • [1] Stability of MgO in the Eutectic Melts Li2CO3–Na2CO3 and Li2CO3–K2CO3
    A. S. Tolkacheva
    M. A. Konopel’ko
    Russian Metallurgy (Metally), 2023, 2023 : 223 - 228
  • [2] Corrosion protection of steel in molten Li2CO3–K2CO3 and Na2CO3–K2CO3 mixtures in a hydrogen-containing atmosphere
    I.M. Petrushina
    L. Qingfeng
    F. Borup
    N.J. Bjerrum
    Journal of Applied Electrochemistry, 2000, 30 : 929 - 937
  • [3] Thermal and carbothermic decomposition of Na2CO3 and Li2CO3
    Kim, JW
    Lee, HG
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2001, 32 (01): : 17 - 24
  • [4] Thermal and carbothermic decomposition of Na2CO3 and Li2CO3
    Jong-Wan Kim
    Hae-Geon Lee
    Metallurgical and Materials Transactions B, 2001, 32 : 17 - 24
  • [5] Hygroscopic Growth and Phase Transitions of Na2CO3 and Mixed Na2CO3/Li2CO3 Particles: Influence of Li2CO3 on Phase Transitions of Na2CO3 and Formation of LiNaCO3
    Ma, Shuaishuai
    Yang, Miao
    Pang, Shufeng
    Zhang, Yunhong
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (51): : 10870 - 10878
  • [6] SOLUBILITY OF NIO IN MOLTEN LI2CO3, NA2CO3, K2CO3, AND RB2CO3 AT 910-DEGREES-C
    ORFIELD, ML
    SHORES, DA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (07) : 1662 - 1668
  • [7] Vaporization behavior of Na2CO3 and K2CO3
    Sergeev, D.
    Yazhenskikh, E.
    Kobertz, D.
    Mueller, M.
    CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2019, 65 : 42 - 49
  • [8] DISSOLUTION BEHAVIOR OF COPPER AND NICKEL OXIDES IN MOLTEN LI2CO3/NA2CO3/K2CO3
    ITO, Y
    TSURU, K
    OISHI, J
    MIYAZAKI, Y
    KODAMA, T
    JOURNAL OF POWER SOURCES, 1988, 23 (04) : 357 - 364
  • [9] Thermodynamic simulation of the oxidation of radioactive graphite in the Na2CO3–K2CO3–NiO and Na2CO3–K2CO3–CuO melts
    Barbin N.M.
    Shavaleev M.R.
    Terent’ev D.I.
    Alekseev S.G.
    Russian Metallurgy (Metally), 2017, 2017 (2) : 136 - 145
  • [10] Anomalies of the Thermodynamic Parameters of the Heterogeneous Li2CO3–Na2CO3–K2CO3–MgO Nanopowder System
    I. D. Zakir’yanova
    I. V. Korzun
    Russian Metallurgy (Metally), 2019, 2019 : 165 - 167