Magnetic fusion energy studies in Japan

被引:4
|
作者
Ogawa, M.
Tsuji-Iio, S.
Komori, A.
Kawahata, K.
Kaneko, O.
Inoue, T.
Kamada, Y.
机构
[1] Tokyo Inst Technol, Nucl Reactors Res Lab, Meguro Ku, Tokyo 1528550, Japan
[2] Natl Inst Fus Sci, Toki 5095292, Japan
[3] Japan Atom Energy Agcy, Naka Fus Inst, Ibaraki 3110193, Japan
关键词
tokamak; helical device; plasma heating; plasma confinement;
D O I
10.1016/j.nima.2007.02.008
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The primary facility for magnetic fusion energy (MFE) research in Japan is JT-60, in which DD plasma is heated up to an electron temperature of T-e > 10 keV with neutral beam injection (NBI) and radio frequency (RF) powers. It is noted that a normalized beta(N) of 2.3 was maintained for 22 s. The JT-60 team has discovered internal transport barrier (ITB) in high-beta-poloidal discharges as an additional improved confinement mechanism like a previously known edge transport barrier (ETB). The operation forming the ITB has remarkably improved the plasma confinement. The second major MFE facility is a large helical device (LHD) at National Institute for Fusion Science (NIFS). The world's largest superconducting coil system of LHD generates helical magnetic field of 3 T where the stored magnetic energy reaches 1 GJ. A quasi-stationary plasma with an electron density of 4 x 10(18)m(-3) at a temperature of about 1 keV was sustained for 54 min with the help of ion cyclotron range of frequency (ICRF) and electron cyclotron range of frequency (ECRF). The maximum electron density so far achieved is 5 x 10(20)m(-3) with Te similar to 1 keV. We report MFE programs related to International Thermonuclear Experimental Reactor (ITER). (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 36
页数:7
相关论文
共 50 条
  • [1] Fusion Studies in Japan
    Ogawa, Yuichi
    [J]. 9TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2015), 2016, 717
  • [2] Studies on heavy ion fusion and high energy density physics in Japan
    Kawata, S.
    Horioka, K.
    Murakami, M.
    Oguri, Y.
    Hasegawa, J.
    Takayama, K.
    Yoneda, H.
    Miyazawa, K.
    Someya, T.
    Ogoyski, A. T.
    Seino, M.
    Kikuchi, T.
    Kawamura, T.
    Ogawa, M.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 577 (1-2): : 21 - 29
  • [3] MAGNETIC AND INERTIAL CONFINEMENT FUSION IN JAPAN
    YAMANAKA, C
    [J]. JOURNAL OF FUSION ENERGY, 1987, 6 (02) : 111 - 127
  • [4] A pathway to laser fusion energy in Japan
    Azechi, Hiroshi
    [J]. 9TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2015), 2016, 717
  • [5] Perspectives of laser inertial fusion energy in Japan
    Yamanaka, C
    [J]. LASER AND PARTICLE BEAMS, 1999, 17 (02) : 145 - 157
  • [6] FUSION POWER-REACTOR STUDIES IN JAPAN
    SEKI, Y
    [J]. FUSION TECHNOLOGY, 1992, 21 (03): : 1707 - 1714
  • [7] PROGRESS AND DIRECTIONS IN MAGNETIC FUSION ENERGY
    THOMASSEN, KI
    [J]. ANNUAL REVIEW OF ENERGY, 1984, 9 : 281 - 319
  • [8] Charting the Roadmap to Magnetic Fusion Energy
    Neilson, G. H.
    Betti, R.
    Gates, D.
    Kessel, C.
    Menard, J.
    Prager, S.
    Scott, S.
    Zarnstorff, M.
    [J]. 2011 IEEE/NPSS 24TH SYMPOSIUM ON FUSION ENGINEERING (SOFE), 2011,
  • [9] PROGRESS IN MAGNETIC FUSION ENERGY RESEARCH
    THOMASSEN, KI
    [J]. PROCEEDINGS OF THE IEEE, 1993, 81 (03) : 390 - 398
  • [10] Developments in inertial fusion energy and beam fusion at magnetic confinement
    Hora, H
    [J]. LASER AND PARTICLE BEAMS, 2004, 22 (04) : 439 - 449