Learning higher-order structures in natural images

被引:65
|
作者
Karklin, Y
Lewicki, MS [1 ]
机构
[1] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Ctr Neural Basis Cognit, Pittsburgh, PA 15213 USA
关键词
D O I
10.1088/0954-898X/14/3/306
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The theoretical principles that underlie the representation and computation of higher-order structure in natural images are poorly understood. Recently, there has been considerable interest in using information theoretic techniques, such as independent component analysis, to derive representations for natural images that are optimal in the sense of coding efficiency. Although these approaches have been successful in explaining properties of neural representations in the early visual pathway and visual cortex, because they are based on a linear model, the types of image structure that can be represented are very limited. Here, we present a hierarchical probabilistic model for learning higher-order statistical regularities in natural images. This non-linear model learns an efficient code that describes variations in the underlying probabilistic density. When applied to natural images the algorithm yields coarse-coded, sparse-distributed representations of abstract image properties such as object location, scale and texture. This model offers a novel description of higher-order image structure and could provide theoretical insight into the response properties and computational functions of lower level cortical visual areas.
引用
收藏
页码:483 / 499
页数:17
相关论文
共 50 条
  • [1] Higher-order structures in natural scenes
    Tanaka, Takuma
    Aoyagi, Toshio
    Kaneko, Takeshi
    NEUROSCIENCE RESEARCH, 2009, 65 : S109 - S109
  • [2] Higher-order statistical redundancy in natural images
    Summers, RJ
    Thomson, MGA
    PERCEPTION, 2004, 33 : 115 - 115
  • [3] Learning the higher-order structure of a natural sound
    Bell, AJ
    Sejnowski, TJ
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1996, 7 (02) : 261 - 267
  • [4] Sensitivity to local higher-order correlations in natural images
    Gerhard, H.
    Wichmann, F.
    Bethge, M.
    PERCEPTION, 2011, 40 : 18 - 19
  • [5] Higher-order learning
    Lewis S.
    Nature Reviews Neuroscience, 2021, 22 (2) : 75 - 75
  • [6] Higher-order learning
    Piotr Evdokimov
    Umberto Garfagnini
    Experimental Economics, 2022, 25 : 1234 - 1266
  • [7] Higher-order statistics and the multivariate probability density function of natural images
    Zetzsche, C.
    Krieger, G.
    Roehrbein, F.
    PERCEPTION, 2000, 29 : 82 - 82
  • [8] Higher-Order Quadruplex Structures
    Petraccone, Luigi
    QUADRUPLEX NUCLEIC ACIDS, 2013, 330 : 23 - 46
  • [9] Perceived contrast of natural images is mediated by higher-order image statistics
    Troscianko, T.
    Chirimuuta, M.
    Parraga, A.
    Tolhurst, D.
    PERCEPTION, 2000, 29 : 82 - 82
  • [10] The role of higher-order statistical dependency of natural images in visual perception
    Maboudi, H.
    Abouzari, M.
    PERCEPTION, 2012, 41 : 257 - 257